+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

US funds spark holey laser study

An academic collaboration with Bell Labs will initially make GaAs quantum cascade lasers, and opens up the possibility of SiGe devices based on the same principles.

A New York professor has been granted $300,000 by the US National Science Foundation in the hope of producing the first exclusively hole transport-based quantum cascade laser.

Oana Malis, of Binghamton University, says that her research could make SiGe the basis for such a device in the future and allow the first electrically pumped silicon laser.

However, the initial project will focus on carbon-doped nanostructures containing alternating GaAs and AlAs layers, which are intended to emit 5-10 µm wavelength infra-red light.

The surface-emitting devices will be fabricated at Alcatel-Lucent s Bell Labs by Loren Pfeiffer, who Malis describes as “a world leader in the MBE growth of high-purity GaAs”.

Malis and Pfeiffer are currently performing initial research in the three year project, whose main material target is producing infra-red VCSELS for spectroscopic gas detection.

The money will be spent on the day-to-day running of what will be quite fundamental research, Malis told compoundsemiconductor.net.

“The project will focus on enhancing the understanding of the physics of hole intersubband transitions and of ultrafast hole relaxation processes in the context of a well developed semiconductor system where material quality issues are minimized,” she explained.

“This investigation will also advance the understanding of basic mechanisms involved in molecular beam epitaxy of nanostructures and in growth of high-purity carbon-doped GaAs.”

The Binghamton-Bell Labs team will also be investigating infra-red quantum cascade lasers (QCLs) made from InAlN/GaN layers and has earned a $44,244 grant from Research Corporation for this effort.

This project will study the feasibility of making nitride-based QCLs, which is in part a question of epitaxy because “the growth of InAlN/GaN by MBE is fairly challenging”, according to Malis.

Michael Manfra, the Bell Labs scientist who will be fabricating the devices, will use about 15 percent indium content to lattice match the InAlN layers with GaN.

Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: