+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
*/
News Article

New device is elusive to infrared cameras

A tuneable material using sapphire and vanadium dioxide developed at Harvard boasts nearly 100 percent absorption on demand
Now you see it, now you don’t.

A new device invented at the Harvard School of Engineering and Applied Sciences (SEAS) can absorb 99.75 percent of infrared light that shines on it.

When activated, it appears black to infrared cameras.

Composed of just a 180 nanometre (nm) thick layer of vanadium dioxide (VO2) on top of a sheet of sapphire, the device reacts to temperature changes by reflecting dramatically more or less infrared light.

Announced in the journal Applied Physics Letters, and featured on its cover, the absorber is ultrathin, tuneable, and well suited for use in a range of infrared optical devices.

The researchers say that perfect absorbers have been created many times before, but not with such versatile properties.

In a Fabry-Pérot cavity, for instance, used in a VCSEL, two mirrors sandwich an absorbing material, and light reflects light back and forth until it's mostly all gone. Other devices incorporate surfaces with nanoscale metallic patterns that trap and eventually absorb the light.

"Our structure uses a highly unusual approach, with better results," says principal investigator Federico Capasso at SEAS.

"We exploit a kind of naturally disordered metamaterial, along with thin-film interference effects, to achieve one of the highest absorption rates we've ever seen. Yet our perfect absorber is structurally simpler than anything tried before, which is important for many device applications," continues Capasso.



Mikhail Kats, Federico Capasso, and Shriram Ramanathan used unusual materials and interference effects to create a perfect absorber. They are pictured here in a scanning electron microscopy imaging suite at the Harvard Centre for Nanoscale Systems. (Photo by Caroline Perry, SEAS Communications.)

With collaborators at Harvard and at the University of California, San Diego, Capasso's research group took advantage of surprising properties in both of the materials they used.

Vanadium dioxide is normally an insulating material, meaning that it does not conduct electricity well.

Take it from room temperature up to about 680C, however, and it undergoes a dramatic transition.

The crystal quickly rearranges itself as the temperature approaches a critical value. Metallic islands appear as specks, scattered throughout the material, with more and more appearing until it has become uniformly metallic.

“Right near this insulator-to-metal transition, you have a very interesting mixed medium, made up of both insulating and metallic phases,” says co-authorof the paper, Shriram Ramanathan, Associate Professor of Materials Science at SEAS, who synthesised the thin film. “It’s a very complex and rich microstructure in terms of its electronic properties, and it has very unusual optical properties.”

Those properties, when manipulated correctly, happen to be ideal for infrared absorption.

Meanwhile, the underlying sapphire substrate has a secret of its own. Usually transparent, its crystal structure actually makes it opaque and reflective, like a metal, to a narrow subset of infrared wavelengths.

The result is a combination of materials that internally reflects and devours incident infrared light.


The image on the left shows the experimental setup used for measuring the reflectivity of the vanadium-sapphire device. The graph on the right illustrates that at just the right temperature (light blue line), the reflectivity of the device drops almost to zero (99.75 percent absorbance) for infrared light at a wavelength of 11.6µm. (Illustrations courtesy of Mikhail Kats.)

"Both of these materials have lots of optical losses, and we've demonstrated that when light reflects between lossy materials, instead of transparent or highly reflective ones, you get strange interface reflections," explains lead author Mikhail Kats, a graduate student at SEAS.

"When you combine all of those resulting waves, you can coax them to destructively interfere and completely cancel out. The net effect is that a film one hundred times thinner than the wavelength of the incident light can create perfect absorption."

The challenge for Capasso, Ramanathan, Kats, and their colleagues was not only to understand this behavior, but also to learn how to fabricate pure enough samples of the vanadium dioxide.

“Vanadium oxide can exist in many oxidation states, and only if you have VO2 does it go through a metal-insulator transition close to room temperature,” Ramanathan explains.

“We have developed several techniques in our lab to allow exquisite compositional and structural control, almost at the atomic scale, to grow such complex films. The resulting phase purity allows us to see these remarkable properties, which otherwise would be very difficult to observe.”

Because the device can be easily switched between its absorbent and non-absorbent states, the possible applications are quite wide ranging and include bolometers (thermal imaging devices) with tuneable absorption, spectroscopy devices, tuneable filters, thermal emitters, radiation detectors, and equipment for energy harvesting.

“An ideal bolometer design needs to absorb all of the infrared light that falls on it, turning it to heat, and correspondingly its resistance should change a lot per degree change in temperature,” notes Kats. “In principle, our new perfect absorber could be used to make incredibly sensitive thermal cameras.”

Harvard’s Office of Technology Development has filed patent applications on the novel invention and is actively pursuing licensing and commercialisation opportunities.

This work was supported in part by the Defence Advanced Research Projects Agency (DARPA). The researchers were also supported by a graduate research fellowship from the National Science Foundation; the Agency for Science, Technology, and Research in Singapore, the Office of Naval Research, the Jeffress Memorial Trust; and the Air Force Office of Scientific Research.

Connecting the Compound Semiconductor Industry

The 13th CS International conference builds on the strengths of its predecessors, with around 40 leaders from industry and academia delivering presentations that fall within five key themes: Ultrafast Communication; Making Headway with the MicroLED; Taking the Power from Silicon, New Vectors for the VCSEL, and Ultra-wide Bandgap Devices.

Delegates attending these sessions will gain insight into device technology, find out about the current status and the roadmap for the compound semiconductor industry, and discover the latest advances in tools and processes that will drive up fab yields and throughputs.

To discover our sponsorship and exhibition opportunities, contact us at:

Email: info@csinternational.net
Phone: +44 (0)24 7671 8970

To register your place as a delegate, visit: https://csinternational.net/register

Register
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: