Loading...
News Article

Scientists create new crystal structure for spintronics

News
Mixture of iron, bismuth and selenium is stable at room temperature

Researchers at the University of Michigan have created a new crystal structure for spintronics using a mixture of iron, bismuth and selenium.

The compound is claimed to be the first to build spintronic properties into a material that's stable at room temperature and easily tailored to a variety of applications. It could eventually be used as the base material for spintronic processors and other devices, much like silicon is the base for electronic computing devices, according to Ferdinand Poudeu, assistant professor of materials science and engineering who led the study .

Spintronics use both the on or off electrical charge and the "˜up' or "˜down' magnetic spin of electrons to store information, whereas today's electronics use only electrical charge.Spin-based circuits can be smaller than charge-based circuits, enabling device makers to pack more of them onto a single processor. Spintronics can also retain data after power is shut off.

"You can only make an electronic circuit so small before the charge of an electron becomes erratic," said Poudeu. "But the spin of electrons remains stable at much smaller sizes, so spintronic devices open the door to a whole new generation of computing."

But spintronic semiconductors require precise levels of both magnetism and conductivity. Researchers have struggled to create one that can be easily tuned to the levels required and that maintains its properties over a range of temperatures. Poudeu said that the root of the problem lies in the crystalline structure that makes up semiconductors.

"Today's semiconductors are made of crystals with simple, symmetrical patterns, like a microscopic lattice that repeats over and over," he said. "We control the properties of those semiconductors by adding atoms of different elements to the holes in that lattice. For example, we can add bismuth to increase conductivity, or iron to increase magnetism.

"To make spintronic semiconductors, we need to add atoms of different sizes, and we need flexibility in where we place those atoms. But in most commonly used crystals, the holes are all similarly sized and regularly spaced. That gives us a very limited amount of control."

Researchers have been working for years to solve this problem by finding new ways to add atoms to commonly used crystalline structures. But Poudeu's team's approach of creating an entirely new crystal structure out of iron, bismuth and selenium has resulted in a complex crystal that offers much greater flexibility. The low-symmetry crystal has holes of varying size placed at varying distances in multiple, overlapping layers.

"Ordinarily, conductivity and magnetism are linked together, so you can't change one without affecting the other," said Juan Lopez, a doctoral student in materials science and engineering who worked on the project. "But this new compound changes that. It enables us to arrange atoms in a huge number of different combinations so that we can manipulate conductivity and magnetism independently. That level of control is going to open a whole new set of possibilities in spintronics."

Lopez said the project's cross-disciplinary team has brought a fresh perspective to the project, combining chemistry, crystallography and computer science to build a new solution to a problem that has vexed researchers for years.

So far, the team has only created and tested the new compound in powder form. The next step is to manufacture it in the thin film that would be required for a spintronic device. Lopez believes that this may be feasible within a year.

"˜Coexistence of High-T Ferromagnetism and n-Type Electrical Conductivity in FeBi2Se4' by Kulugammana Ranmohotti et al, J. Am. Chem. Soc., 2015, 137 (2).


×
Search the news archive

To close this popup you can press escape or click the close icon.
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: