+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

Solving MoS2's 'thin' Problem

US team increases material's light emission by twelve times

The promising new semiconducting material MoS2's greatest asset  - its monolayer thickness - is also its biggest challenge. Monolayer MoS2's ultra-thin structure is strong, lightweight, and flexible, making it a good candidate for applications such as high-performance, flexible electronics. Such a thin material, however, has very little interaction with light, limiting the material's use in light emitting and absorbing applications.

"The problem with these materials is that they are just one monolayer thick," said Koray Aydin, assistant professor of electrical engineering and computer science at Northwestern University's McCormick School of Engineering. "So the amount of material that is available for light emission or light absorption is very limited. In order to use these materials for practical photonic and optoelectric applications, we needed to increase their interactions with light."

Aydin and his team tackled this problem by combining nanotechnology, materials science, and plasmonics, the study of the interactions between light and metal. The team designed and fabricated a series of silver nanodiscs and arranged them in a periodic fashion on top of a sheet of MoS2. Not only did they find that the nanodiscs enhanced light emission, but they determined the specific diameter of the most successful disc, which is 130 nanometers.

"We have known that these plasmonic nanostructures have the ability to attract and trap light in a small volume," said Serkan Butun, a postdoctoral researcher in Aydin's lab. "Now we've shown that placing silver nanodiscs over the material results in twelve times more light emission."

The use of the nanostructures - as opposed to using a continuous film to cover the MoS2 - allows the material to retain its flexible nature and natural mechanical properties.

Supported by Northwestern's Materials Research Science and Engineering Centre and the Institute for Sustainability and Energy at Northwestern, the research is described in the March 2015 online issue of NanoLetters. Butun is first author of the paper. Sefaatiin Tongay, assistant professor of materials science and engineering at Arizona State University, provided the large-area monolayer MoS2 material used in the study.

With enhanced light emission properties, MoS2 could be a good candidate for light emitting diode technologies. The team's next step is to use the same strategy for increasing the material's light absorption abilities to create a better material for solar cells and photodetectors.

"This is a huge step, but it's not the end of the story," Aydin said. "There might be ways to enhance light emission even further. But, so far, we have successfully shown that it's indeed possible to increase light emission from a very thin material."

CS International to return to Brussels – bigger and better than ever!


The leading global compound semiconductor conference and exhibition will once again bring together key players from across the value chain for two-days of strategic technical sessions, dynamic talks and unrivalled networking opportunities.


Join us face-to-face between 28th – 29th June 2022

  • View the agenda.
  • 3 for the price of 1. Register your place and gain complementary access to TWO FURTHER industry leading conferences: PIC International and SSI International.
  • Email info@csinternational.net  or call +44 (0)24 7671 8970 for more details.

*90% of exhibition space has gone - book your booth before it’s too late!

Register


×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: