+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Loading...
News Article

A different type of 2D semiconductor

Berkeley Lab researchers produce first ultrathin sheets of perovskite hybrids

Ultrathin sheets of a new 2D hybrid perovskite are square-shaped and relatively large in area

To add the growing list of 2D semiconductors such as graphene, boron nitride (BN), and MoS2, whose electronic properties make them potential successors to silicon, researchers at the US Department of Energy (DOE)'s Lawrence Berkeley National Lab have added hybrid organic-inorganic perovskites. 

However, unlike the other contenders, which are covalent semiconductors, these 2D hybrid perovskites are ionic materials, which gives them special properties of their own.

The team at Berkeley Lab has successfully grown atomically thin 2D sheets of organic-inorganic hybrid perovskites from solution. The ultrathin sheets are of high quality, large in area, and square-shaped. They also exhibited efficient photoluminescence, colour-tunability, and a apparently a unique structural relaxation not found in covalent semiconductor sheets.

"We believe this is the first example of 2D atomically thin nanostructures made from ionic materials," says Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division who first came up with the idea for this research 20 years ago.

"The results of our study open up opportunities for fundamental research on the synthesis and characterisation of atomically thin 2D hybrid perovskites and introduces a new family of 2D solution-processed semiconductors for nanoscale optoelectronic devices, such as field effect transistors and photodetectors."

Yang, who also holds appointments with the University of California (UC) Berkeley and is a co-director of the Kavli Energy NanoScience Institute (Kavli-ENSI), is the corresponding author of a paper describing this research in the journal Science.

Traditional perovskites are typically metal-oxide materials that display a wide range of useful electromagnetic properties, including ferroelectricity and piezoelectricity, superconductivity and colossal magnetoresistance. In the past couple of years, organic-inorganic hybrid perovskites have been solution-processed into thin films or bulk crystals for photovoltaic devices that have reached a 20-percent power conversion efficiency. 

Separating these hybrid materials into individual, free-standing 2D sheets through such techniques as spin-coating, chemical vapour deposition, and mechanical exfoliation has met with limited success.

In 1994, while a PhD student at Harvard University, Yang proposed a method for preparing 2D hybrid perovskite nanostructures and tuning their electronic properties but never acted upon it. This past year, while preparing to move his office, he came upon the proposal and passed it on to co-lead author Dou, a post-doctoral student in his research group. Dou, working mainly with the other lead authors Wong and Yu, used Yang's proposal to synthesise free-standing 2D sheets of CH3NH3PbI3, a hybrid perovskite made from a blend of lead, bromine, nitrogen, carbon and hydrogen atoms.

"Unlike exfoliation and chemical vapour deposition methods, which normally produce relatively thick perovskite plates, we were able to grow uniform square-shaped 2D crystals on a flat substrate with high yield and excellent reproducibility," says Dou. 

"We characterised the structure and composition of individual 2D crystals using a variety of techniques and found they have a slightly shifted band-edge emission that could be attributed to structural relaxation. A preliminary photoluminescence study indicates a band-edge emission at 453nm, which is red-shifted slightly as compared to bulk crystals. This suggests that colour-tuning could be achieved in these 2D hybrid perovskites by changing sheet thickness as well as composition via the synthesis of related materials," he added.

The well-defined geometry of these square-shaped 2D crystals is the mark of high quality crystallinity, and their large size should facilitate their integration into future devices.

"With our technique, vertical and lateral heterostructures can also be achieved," Yang says. "This opens up new possibilities for the design of materials/devices on an atomic/molecular scale with distinctive new properties."

'Atomically thin two-dimensional organic-inorganic hybrid perovskites', by Letian Dou et al;  Science 25 September 2015: Vol. 349 no. 6255

×
Search the news archive

To close this popup you can press escape or click the close icon.
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: