News Article

EPFL Scientists Develop First Magnetic Photoconductor

New perovskite could be used to build next generation hard drives


Scientists from EPFL (Ecole Polytechnqiue Federale de Lausanne) in Switzerland have developed a new perovskite material with unique properties that they think can be used to build next-generation hard drives. The work, which describes the first ever magnetic photoconductor, is published in Nature Communications.

Perovskite photovoltaics are gradually becoming a cheaper alternative to current silicon systems, drawing much interest from energy scientists. But this particular material, which is a modified version of perovskite, exhibits some unique properties that make it particularly interesting as a material to build next-generation digital storage systems.

Magnetism in material arises from the interactions of localised and moving electrons of the material; in a way, it is the result of competition between different movements of electrons. This means that the resulting magnetic state is wired in the material and it cannot be reversed without changing the structure of electrons in the material's chemistry or crystal structure. But an easy way to modify magnetic properties would be an enormous advantage in many applications such as magnetic data storage.

The new material -  developed in the lab of Laszló Forró, in a project led by postdoc Bálint Náfrádi -  offers exactly that. "We have essentially discovered the first magnetic photoconductor," says Náfrádi. This new crystal structure combines the advantages of both ferromagnets, whose magnetic moments are aligned in a well-defined order, and photoconductors, where light illumination generates high density free conduction electrons.

The combination of the two properties produced an entirely new phenomenon: the 'melting' of magnetisation by photo-electrons, which are electrons that are emitted from a material when light hits it. In the new perovskite material, a simple red LED -  much weaker than a laser pointer -  is enough to disrupt, or "melt" the material's magnetic order and generate a high density of travelling electrons, which can be freely and continuously tuned by changing the light's intensity. The timescale for shifting the magnetic in this material is also very fast, virtually needing only quadrillionths of a second.

Though still experimental, all these properties mean that the new material can be used to build the next generation of memory-storage systems, featuring higher capacities with low energy demands. "This study provides the basis for the development of a new generation of magneto-optical data storage devices," says Náfrádi. "These would combine the advantages of magnetic storage - long-term stability, high data density, non-volatile operation and re-writability -  with the speed of optical writing and reading."

This work included contributions from the European Synchrotron Radiation Facility and the University of Geneva. It was funded by the Swiss National Science Foundation, the European Research Council (PICOPROP and TopoMat) and the NCCR-MARVEL.

"˜Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3' by B Náfrádi et al; Nature Communications 7, Article number: 13406 (2016). 

AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.



Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
Live Event