Info
Info
News Article

US Team Makes Shortest Wavelength UV-C LED Using GaN

News

Cornell researchers blaze trail to more efficient, eco-friendly deep-ultraviolet LEDs

A Cornell University research group led by Huili (Grace) Xing and Debdeep Jena, along with collaborators from the University of Notre Dame, has reported progress in creating a new, small UV-C LED.

With wavelengths of between 200 and 280nm, UV-C light is unique because of its reputation as a killer of harmful organisms.

Using atomically controlled thin monolayers of GaN and AlN as active regions, the group has shown the ability to produce deep-UV emission with a LED between 232 and 270nm wavelengths. Their 232nm emission represents the shortest recorded wavelength using GaN as the light-emitting material. The previous record was 239nm, by a group in Japan.

"MBE-grown 232-270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures" was published online Jan. 27 in
Applied Physics Letters.

Postdoctoral researcher SM (Moudud) Islam, the lead author, said: "UV-C light is very attractive because it can destroy the DNA of species that cause infectious diseases, which cause contamination of water and air."

One of the major challenges with ultraviolet LEDs is efficiency, which is measured in three areas: injection efficiency - the proportion of electrons passing through the device that are injected into the active region; internal quantum efficiency (IQE) - the proportion of all electrons in the active region that produce photons or UV light; and light extraction efficiency - the proportion of photons generated in the active region that can be extracted from the device and are actually useful.

"If you have 50 percent efficiency in all three components ... multiply all of these and you get one-eighth," Islam said. "You're already down to 12 percent efficiency."

In the deep-UV range, all three efficiency factors suffer, but this group found that by using GaN instead of conventional AlGaN, both IQE and light extraction efficiency are enhanced.

Injection efficiency is improved through the use of a polarisation-induced doping scheme for both the negative (electron) and positive (hole) carrier regions, a technique the group explored in previous work.

Now that the group has proven its concept of enhanced deep-UV LED efficiency, its next task is packaging it in a device that could one day go on the market. Deep-UV LEDs are used in food preservation and counterfeit currency detection, among other things.

Further study will include packaging both the new technology and existing technologies in otherwise similar devices, for the purpose of comparison.

"In terms of quantifying the efficiency, we do want to package it within the next few months and test it as if it was a product, and try to benchmark it against a product with one of the available technologies," Jena said.

Other Cornell collaborators included research associate Vladimir Protasenko and electrical and computer engineering doctoral students Kevin Lee and Shyam Bharadwaj.

The work was supported by grants from the US National Science Foundation and the Air Force Office of Scientific Research.



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event