Info
Info
News Article

'Soft' Semiconductors Could Transform Displays

News

Berkeley Lab researchers find tunable halide perovskites could usher in new generation of optoelectronic devices

Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have shown that a class of compound semiconductor called halide perovskites is capable of emitting multiple, bright colours from a single nanowire at resolutions as small as 500 nanometers.

The findings, published online this week in the early edition of the Proceedings of the National Academy of Sciences, represent a challenge to quantum dot displays that rely upon traditional semiconductor nanocrystals to emit light. The researchers think it could also influence the development of new applications in optoelectronics, photovoltaics, nanoscopic lasers, and ultrasensitive photodetectors, among others.

The researchers used electron beam lithography to fabricate halide perovskite nanowire heterojunctions - a key building block of modern electronics and photovoltaics.

The researchers pointed out that the lattice in halide perovskites is held together by ionic instead of covalent bonds. In ionic bonds, atoms of opposite charges are attracted to each other and transfer electrons to each other. Covalent bonds, in contrast, occur when atoms share their electrons with each other.

"With inorganic halide perovskite, we can easily swap the anions in the ionic bonds while maintaining the single crystalline nature of the materials," said study principal investigator Peidong Yang, senior faculty scientist at Berkeley Lab's Materials Sciences Division. "This allows us to easily reconfigure the structure and composition of the material. That's why halide perovskites are considered soft lattice semiconductors. Covalent bonds, in contrast, are relatively robust and require more energy to change. Our study basically showed that we can pretty much change the composition of any segment of this soft semiconductor."

In this case, the researchers tested caesium lead halide perovskite, and then they used a common nanofabrication technique combined with anion exchange chemistry to swap out the halide ions to create cesium lead iodide, bromide, and chloride perovskites.

Each variation resulted in a different colour emitted. Moreover, the researchers showed that multiple heterojunctions could be engineered on a single nanowire. They were able to achieve a pixel size down to 500 nanometers, and they determined that the colour of the material was tunable throughout the entire range of visible light.

The researchers said that the chemical solution-processing technique used to treat this class of soft, ionic-bonded semiconductors is far simpler than methods used to manufacture traditional colloidal semiconductors.

"For conventional semiconductors, fabricating the junction is quite complicated and expensive," said study co-lead author Letian Dou, who conducted the work as a postdoctoral fellow in Yang's lab. "High temperatures and vacuum conditions are usually involved to control the materials' growth and doping. Precisely controlling the materials composition and property is also challenging because conventional semiconductors are 'hard' due to strong covalent bonding."

To swap the anions in a soft semiconductor, the material is soaked in a special chemical solution at room temperature.

"It's a simple process, and it is very easy to scale up," said Yang, who is also a professor of chemistry at UC Berkeley. "You don't need to spend long hours in a clean room, and you don't need high temperatures."

The researchers are continuing to improve the resolution of these soft semiconductors, and are working to integrate them into an electric circuit.

Other co-lead authors on this paper are Christopher Kley, UC Berkeley postdoctoral fellow, and Minliang Lai, UC Berkeley graduate student. Dou is now an assistant professor of chemical engineering at Purdue University.



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event