Info
Info

Swiss Engineers Solve Mystery Of Perovskite Negative Capacitance

News

Apparent capacitances are not stored charge but a slowly increasing current

Perovskite solar cells are highly efficient and low-cost but suffer from poor long-term stability. Related to this are various odd phenomena in perovskite materials and devices, where very slow microscopic processes produce a kind of memory effect.

Measuring the efficiency of a perovskite solar cell can depend on things like how long the device is illuminated prior to measurement or how the voltage was applied. A few years ago, this effect, known as current-voltage hysteresis, led to disputes on how to accurately determine the efficiency of perovskites. Another example of these obscure processes is a (partial) recovery of a previously degraded solar cell during day-night cycling.

Such effects are a concern when measuring the solar cells' performance as a function of frequency, which is a typical measurement for characterising these devices in more detail (impedance spectroscopy). They lead to large signals at low frequencies (Hz to mHz) and giant capacitance values for the (mF/cm2), including strange, 'unphysical' negative values that are still a puzzle to the research community.

Now, chemical engineers from the lab of Anders Hagfeldt at Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland have solved the mystery. Led by Wolfgang Tress, a scientist in Hagfeldt's lab, they found that the large perovskite capacitances are not classical capacitances in the sense of charge storage, but just appear as capacitances because of the cells' slow response time.

The researchers show this by measurements in the time domain and with different voltage scan rates. They find that the origin of the apparent capacitance is a slow modification of the current passing the contact of the solar cells, which is regulated by a slow accumulation of mobile ionic charge. A slowly increasing current appears like a negative capacitance in the impedance spectra.

The work sheds light onto the interaction between the photovoltaic effect in these devices and the ionic conductivity of perovskite materials. Gaining such in-depth understanding contributes to the endeavour to tailored, stable perovskite solar cells.

'Origin of apparent light-enhanced and negative capacitance in perovskite solar cells' by Firouzeh Ebadi et al; Nature Communications 05 April 2019



CS International 2020 dates announced!

We are delighted to announce that CS International 2020 will take place on Tuesday 31st March and Wednesday 1st April at the Sheraton Airport Hotel, Brussels.

The event continues to grow exponentially year on year with many sponsors and exhibitors already signed up for 2020.

Don't miss out on being a part of the leading global compound semiconductor industry event

Contact us today for speaking/sponsorship/exhibition opportunities

Email [email protected] or Telephone +44(0)24 7671 8970

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info