Loading...
News Article

Rohm SiC MOSFETs feature Lowest ON Resistance

News

Advanced design expected to see widespread adoption in the main drive inverters of EVs

Rohm has announced the cutting-edge 4th Generation 1200V SiC MOSFETs optimised for automotive powertrain systems, including the main drive inverter, as well as power supplies for industrial equipment.

In recent years, the proliferation of next-generation electric vehicles (xEVs) has been accelerating the development of smaller, lighter, and more efficient electrical systems. In particular, improving efficiency while decreasing the size of the main inverter that plays a central role in the drive system remains among the most important challenges, requiring further advancements in power devices.

The capacity of the onboard battery is increasing to improve the cruising range of EVs. And in conjunction with this, the use of higher voltage batteries (800V) is progressing to meet the demand for shorter charging times.


For power semiconductors there is often a trade-off relationship between lower ON resistance and short-circuit withstand time, which is required to strike a balance for achieving lower power losses in SiC MOSFETs. Rohm was able to successfully improve this trade-off relationship and reduce ON resistance per unit area by 40% over conventional products without sacrificing short-circuit withstand time by further improving an original double trench structure. In addition, significantly reducing the parasitic capacitance (which is a problem during switching) makes it possible to achieve 50% lower switching loss over our previous generation of SiC MOSFETs.


As a result, Rohm’s new 4th Generation SiC MOSFETs are capable of delivering low ON resistance with high-speed switching performance, contributing to greater miniaturisation and lower power consumption in a variety of applications, including automotive traction inverters and switching power supplies. Bare chip samples have been made available from June 2020, with discrete packages to be offered in the future.

Rohm is committed to continue to expand its SiC power device lineup while combining modularisation technologies with peripheral devices such as control ICs designed to maximise performance in order to contribute to technical innovation in next-generation vehicles. At the same time, Rohm will provide solutions that resolve customer issues – including web-based simulation tools that reduce application development man-hours and help prevent evaluation problems.

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfOâ‚‚ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: