+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
Technical Insight

Magazine Feature
This article was originally featured in the edition:
Volume 29 Issue 3

Component viability risks bursting the quantum bubble

News

To speed the arrival of quantum technologies, the incredibly demanding compound semiconductor devices that lie at the heart of them need to be produced on high-volume platforms.

BY DENISE POWELL AND WYN MEREDITH FROM THE COMPOUND SEMICONDUCTOR CENTRE, SAMUEL SHUTTS FROM CARDIFF UNIVERSITY, MOHAMED MISSOUS FROM THE INTEGRATED COMPOUND SEMICONDUCTORS, MOHSIN HAJI FROM THE NATIONAL PHYSICAL LABORATORY AND CHRIS MEADOWS FROM CSCONNECTED.

There is no doubt that quantum technologies have the potential to revolutionise every sector we can think of. Their impact will include: highly accurate navigation, enabled by quantum gyroscopes; GNSS-free communications, underpinned by atomic clocks; ultra-secure communications, via quantum key distribution; improved manufacturing control and timely maintenance on infrastructure; the detection of anomalies in organs such as the brain and heart, through quantum magnetometers, alongside rapid drug and materials discovery; and financial modelling, enabled by quantum computers.

The possibilities for quantum technologies are so vast that this revolution is anticipated to be on a par with that of AI, in terms of scale. In fact, these two headline-grabbing technologies are complementary, with the true magic underway when quantum systems are enabled by AI. This is not just fantasy: AI is already applied to data from quantum systems at the UK’s National Physical Laboratory to ensure rapid analysis.

Unfortunately, for any nascent technology, promise is no guarantee of success. History attests that when a technology with great potential delivers encouraging results, substantial investment follows – but this optimism may well be short lived, with the bubbles breaking to induce a widespread cull that leaves those hanging under the spotlight having trying to salvage a future for their revolutionary technology. Today some firms are still recovering from the lidar aftermath, and reports suggest AI is next for re-evaluation.

And what of quantum? Why aren’t we seeing widespread deployment of this technology, on the back of investment totalling hundreds of millions of dollars? You might be thinking that the humble laser draws on quantum effects, so quantum is already well-embedded in our lives. That’s somewhat true, but misses the point that here we are considering what most refer to as ‘Quantum 2.0’ – that is, technologies that utilise superposition or entanglement, or as Einstein famously said, “spooky action at a distance”.

To delve deeper into the future of quantum, it’s helpful to consider an example. One highly successful Quantum 2.0 product is the world’s first commercially available chip-scale atomic clock, Microchip’s Microsemi SA.45s CSAC. According to the National Institute of Standards (NIST), this triumph is the culmination of more than 10 years of extensive R&D, costing several tens of millions of dollars, with support from both the Defence Advanced Research Project Agency (DARPA) and NIST. John Kitching, a key researcher at NIST involved in this development, rightly suggests that given that the market for chip-scale atomic clocks is worth around $200 million per annum, it’s difficult for industry to invest the amount needed for fundamental R&D in this area.