Loading...
News Article

NTT achieves 300 GHz band transmission with beamforming

News

Establishes foundation for instantaneous transmission of ultra-high-capacity data to mobile devices

NTT and researchers at the Tokyo Institute of Technology have successfully demonstrated a phased-array transmitter module to enable instantaneous ultra-high capacity data transmission to mobile receivers.

The compact four-element phased-array transmitter module uses CMOS and InP chips on the same printed circuit board. With a steering range of 36 degrees, maximum data rate of 30 Gbps, and communication distance of 50 cm, this transmitter module has succeeded in achieving the world’s first high-speed wireless data transmission in the 300 GHz band using beamforming.

The details were revealed at the 2023 IEEE MTT-S International Microwave Symposium (IMS2023), held in San Diego, Calif. in June 2023.

The 300 GHz band is expected to be used for 6G wireless communications systems. While the band has the advantage of being able to use a wide frequency range, it faces the problem of large path loss during signal propagation through space. Beamforming technology, which concentrates and directs radio energy toward the receiving device, can overcome this problem.

The InP chips, built using NTT's InP-based heterojunction bipolar transistor (InP HBT) technology, integrate the company's high-output power amplifier circuit and antenna circuit. Tokyo Tech developed the CMOS chip containing the frequency conversion and control circuits.

For the power amplifier circuit, high output power is achieved by combining electrical power output from multiple amplifier elements using a low-loss power combiner. The circuit amplifies the signals output from the CMOS chip and radiates the radio wave to the receiving device from the antenna packaged on the same chip.

Conventionally, to connect different types of ICs for the 300 GHz band, each IC is mounted on a waveguide module, and the modules are connected together. However, this approach has the problem of energy loss when radio waves pass through the waveguides. NTT and Tokyo Tech solved this problem through flip-chip bonding of the CMOS and the InP chips and connecting them using metal bumps of several ten micrometers in size. This packaging approach reduces connection loss and achieves high-output power .

Future Research

Short-distance mobile communication devices are expected to be deployed in 6G networks in the future. NTT and Tokyo Tech’s developed technology promises to expand these applications, such as interactive kiosks and femtocells.

The developed technology demonstrated one-dimensional beamforming. NTT and Tokyo Tech are now working on demonstrating two-dimensional beamforming with a 2D array and extending the communication distance by increasing the number of arrays. NTT and Tokyo Tech are also engaged in the development of receiver modules to meet the needs of 6G applications, and in the practical implementation of wireless communication with transmission capacity ten-fold greater than is available today.

QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
Narrow-linewidth DFB lasers now at 405 and 488nm
Researchers develop tech for future fast-charging stations
Vermont GaN Tech Hub awarded nearly $24M
Onsemi completes buy-out of Qorvo SiC JFET business
Quantum Science announces Innovate UK funding
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: