News Article

Room Temp QCL Stretches To 3.1 Microns

Researchers at the University of Sheffield, UK, have published details of what they believe is the shortest-wavelength InP-based quantum cascade laser (QCL) to operate at room temperature.

Based on a strain-compensated InGaAs/AlAsSb material system, the device emits 8 mW of optical power in the pulsed regime at wavelength of 3.1µm. (Applied Physics Letters 94 031106)

Until recently, the prospects of developing high performance QCLs emitting between 3 and 4 microns seemed limited. Such short wavelengths are below the region that can be readily accessed using the conventional material system of InGaAs/AlInAs on InP.

However, since attention has turned to heterostructure systems incorporating III-V antimonides (InGaAs/AlAsSb on InP and InAs/AlSb on InAs), the situation has been transformed.

"Our present InGaAs/AlAsSb QCLs are the shortest wavelength room temperature QCLs grown on an InP substrate," Dmitry Revin, a researcher in John Cockburn s group at Sheffield told optics.org. "This is significant as InP-based devices have much better compatibility with existing optoelectronic device growth and fabrication technology."

"Our laser brings us one step closer to the development of high-performance, short-wavelength QCLs," he added. "Our main aim was to show that short-wavelength QCLs grown on InP substrates and operating at high temperatures were feasible."

According to Revin, one of the key challenges has been perfecting the MBE growth. "AlAsSb is hard to grow because it tends to separate naturally into AlAs and AlSb," he explained. "After establishing reliable growth for AlAsSb lattice matched to InP, the next step was to develop the growth of strain compensated InGaAs/AlAsSb which is crucial, we believe, for the realization of QCLs emitting close to 3µm."

With a pulsed emitter in place, the team is now targeting a continuous wave QCL. "We obtained encouraging results when AlAsSb layers were partly substituted by AlAs layers," commented Revin. "Optimizing the growth of these complex structures as well as improving the laser design should result in a 3µm source that operates in continuous mode at room temperature."

One particular goal is a singlemode QCL operating at 3.35µm at room temperature. Such a source would be ideal for a range of spectroscopy and sensing applications, as ethane gas has a strong absorption line at this wavelength. Monitoring the ethane content in exhaled breath has potential for early detection of disease, for example, but it can also be used for remote detection of oil and gas deposits.

Although Revin and his colleagues have no immediate plans to commercialise their work, they would welcome any interest from industrial companies to help move these devices from the laboratory to the real world.

Author
Jacqueline Hewett is editor of Optics & Laser Europe magazine.

CS International to return to Brussels – bigger and better than ever!


The leading global compound semiconductor conference and exhibition will once again bring together key players from across the value chain for two-days of strategic technical sessions, dynamic talks and unrivalled networking opportunities.


Join us face-to-face between 28th – 29th June 2022

  • View the agenda.
  • 3 for the price of 1. Register your place and gain complementary access to TWO FURTHER industry leading conferences: PIC International and SSI International.
  • Email info@csinternational.net  or call +44 (0)24 7671 8970 for more details.

*90% of exhibition space has gone - book your booth before it’s too late!

Register


×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
Live Event