News Article

Viewing GaN Nanostructures In 3 Dimensions

Individual gallium nitride nanowires as small as 60 nanometres show piezoelectric behaviour in 3D up to six times of that exhibited by bulk GaN

 Just 100 nanometres in diameter, nanowires are often considered one-dimensional.

But researchers at Northwestern University have recently reported that individual GaN nanowires show strong piezoelectricity – a type of charge-generation caused by mechanical stress – in three dimensions.

GaN is among the most technologically relevant semiconducting materials and is ubiquitous today in optoelectronic elements such as blue lasers (for example in blue-ray players) and LEDs. More recently, nanogenerators based on GaN nanowires were shown to be capable of converting mechanical energy (such as biomechanical motion) to electrical energy.

“Although nanowires are one-dimensional nanostructures, some properties – such as piezoelectricity, the linear form of electro-mechanical coupling – are three-dimensional in nature," Espinosa said. “We thought these nanowires should show piezoelectricity in 3D, and aimed at obtaining all the piezoelectric constants for individual nanowires, similar to the bulk material."

The findings revealed that individual GaN nanowires as small as 60 nanometres show piezoelectric behaviour in 3D up to six times of their bulk counterpart. Since the generated charge scales linearly with piezoelectric constants, this finding implies that nanowires are up to six times more efficient in converting mechanical to electrical energy.

To obtain the measurements, researchers applied an electric field in different directions in single nanowire and measured small displacements, often in picometre (10-12 m) range. The group devised a method based on scanning probe microscopy leveraging high-precision displacement measurement capability of an atomic force microscope.

“The measurements were very challenging, since we needed to accurately measure displacements 100 times smaller than the size of the hydrogen atom," said Majid Minary, a postdoctoral fellow and lead author of the study.

These results are exciting especially considering the recent demonstration of nanogenerators based on GaN nanowires, for powering of self-powered nanodevices.

The findings, led by Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering and Applied Science, were published in the online paper, " Individual GaN Nanowires Exhibit Strong Piezoelectricity in 3D", by Majid Minary-Jolandan et al, in Nano Letters, DOI: 10.1021/nl204043y
CS International to return to Brussels – bigger and better than ever!


The leading global compound semiconductor conference and exhibition will once again bring together key players from across the value chain for two-days of strategic technical sessions, dynamic talks and unrivalled networking opportunities.


Join us face-to-face between 28th – 29th June 2022

  • View the agenda.
  • 3 for the price of 1. Register your place and gain complementary access to TWO FURTHER industry leading conferences: PIC International and SSI International.
  • Email info@csinternational.net  or call +44 (0)24 7671 8970 for more details.

*90% of exhibition space has gone - book your booth before it’s too late!

Register


×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
Live Event