News Article

GaN Growth: An Extra Inch

GaN crystal newcomer, Fairfield Crystal Technology, is ready to take substrates to greater lengths, reports Compound Semiconductor.

When it comes to growing high quality, decent-sized GaN crystals, US government is keen to fund companies that are making it happen.

In the last two years, vertically integrated developer of GaN-on-GaN LEDs, Soraa has, won more than $5 million dollars from DoE agency, Advanced Research Projects Agency-Energy (ARPA-E), to develop large area, low cost GaN substrates. Meanwhile GaN crystal developer, Kyma, recently bagged some $3 million to advance its technology for manufacturing substrates, shortly after releasing commercially available two inch GaN substrates.

But now, in the same wave of funding, a third company, Fairfield Crystal Technology, has also attracted $1.5 million to develop a new technique to speed up the growth of GaN single-crystal boules. Perhaps lesser known in the GaN crystal field, the Connecticut-based crystal developer has been manufacturing semiconductor and optical crystal materials since 2004 - key crystals include AlN, ZnS and ZnO - but started looking at GaN two years ago.

"A lot of organisations take one crystal and focus on that but we've looked at different crystals which has given us a good understanding of crystal growth with different techniques, using a range of furnaces," says chief executive, Andy Timmerman. "You know we've done a lot on ZnO have successfully launched AlN so we see this as the next stepping stone to advance our crystal growth technology and work it into commercialisation."

Naturally, government backing helps. ARPA-E sees the material as crucial to a new generation of power devices, hence the hefty weighting in its $27 million SWITCHES program, Strategies for Wide Bandgap, Inexpensive Transistors for Controlling High Efficiency Systems.

And as Timmerman highlights only last month, the Department of Defense opened up solicitations for projects on GaN Technology for GPS L-band space power amplification, as part of its Small Business Innovation Research program. "GaN really has a good fit for our overall research and commercialisation of different products," he adds.

However, Fairfield Crystal is no stranger to US government interest in crystal growth. Preceding 2010, it had won just over $1 million from the National Science Foundation to develop ZnS, CdS, ZnSe and AlN crystals.

Then come 2010, it received $200,000 from the independent government agency to develop a novel approach, and demonstrate and sample one inch diameter free-standing GaN wafers for III-Nitride light emitters and detectors. Three years on, NSF funds run into the millions of dollars with the company working on pilot production of two inch GaN.

But what exactly is the novel approach? Timmerman remains tight-lipped; when asked if the process is based on either HVPE or ammonothermal methods, he confirms it is not based on the latter.

"It is the current state of the art. We know some folks are using ammonothermal, Kyma has been using an HVPE process, and others are looking at a combination of the two. But ours is different," he says. "It's using a combination of expertise from other crystal growth, be it AlN or ZnO, or even just some of the techniques we've gleaned from growing our optical crystals."

One such technique, as evident from a patent published just last year entails a method for growing a zinc oxide (ZnO) single crystal boule from ZnO seed within an iridium crucible placed inside a physical vapour transport (PVT) furnace system. According to the patent, this technique overcomes inadequacies in hydrothermal, CVT and melt growth techniques.

Timmerman declined to comment on the relevance of this to his company's GaN crystal growth, but he is clear that a pure source material is essential the process. "We have found that having a very very clean source material is a priority," he says. "And we've developed an in-house process with high quality source material.

With this in hand, the team now intends to drive GaN substrate costs down by growing longer boules and slicing more wafers per growth run. And of course, a crucial part of the ARPA-E grant, is to grow three inch GaN crystals, within the next three years.

"The time frames are very aggressive, especially since in a number of years other organisations have also been trying," admits Timmerman. "We're cautious but confident we can get there, although we are not dismissive of the challenges."


AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.



Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
Live Event