Info
Info
News Article

Improving Microscopy On The Atomic Scale

TEM is very useful for observing dislocations and measuring layer thicknesses in semiconductors


When capturing images at the atomic scale, even tiny movements of the sample can result in skewed or distorted images - and those movements are virtually impossible to prevent.



Now microscopy researchers at North Carolina State University have developed a new technique that accounts for that movement and eliminates the distortion from the finished product.







The new technique effectively eliminates distortion from nanoscale images as shown in the image above



At issue are scanning transmission electron microscopes (TEMs), which can capture images of a material’s individual atoms. To take those images, scientists have to allow a probe to scan across the sample area - which has an area of less than twenty five nanometres squared. That scanning can take tens of seconds.



The sample rests on a support rod, and while the scanning takes place the rod expands or contracts due to subtle changes in ambient temperature. The rod’s expansion or contraction is imperceptible to the naked eye, but because the sample area is measured in nanometres the rod’s movement causes the sample material to shift slightly. This so-called “drift" can cause the resulting scanning TEM images to be significantly distorted.



“But our approach effectively eliminates the effect of drift on scanning TEM images," says James LeBeau, an assistant professor of materials science and engineering at NC State and senior author of a paper describing the work.



Researchers programmed the microscope to rotate the direction in which it scans the sample. For example, it might first take an image scanning from left to right, then take one scanning from top to bottom, then right to left, then bottom to top. Each scanning direction captures the distortion caused by drift from a different vantage point.



The researchers plug those images into a program they developed that measures the features in each image and uses that data to determine the precise direction and extent of drift within the sample. Once the drift is quantified, the images can be adjusted to remove the distortion caused by the drift.



The resulting images accurately represent the actual structure of the sample and give scientists new capabilities to understand bonding between atoms.



“Historically, a major problem with drift has been that you need to have a reference material in any nanoscale image, so that you can tell how the image has been distorted," LeBeau says. “This technique makes that unnecessary. That means we can now look at completely unknown samples and discover their crystalline structures - which is an important step in helping us control a material’s physical properties."



The paper, “Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge," by Xiahan Sang et al will be published in the March issue of Ultramicroscopy.



There is a patent pending on the technique.



 





AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event