Info
Info
News Article

Material Could Speed Up Underwater Communications

An artificial metamaterial can increase the light density and blink speed of a flourescent light-emitting dye molecule
University of California, San Diego electrical engineering professor Zhaowei Liu and colleagues have taken the first steps in a project to develop fast-blinking LED systems for underwater optical communications.





Electrical engineers at UC San Diego have demonstrated that artificial materials can significantly improve the speed of optical communications. The team showed that an artificial metamaterial can increase the light density and blink speed of a flourescent light-emitting dye molecule. (Image credit: Liu Research Group/UC San Diego


In a recent article in Nature Nanotechnology, Liu and colleagues show that an artificial metamaterial can increase the light intensity and “blink speed" of a fluorescent light-emitting dye molecule.


The nanopatterned layers of silver and silicon in the new material sped up the molecule’s blink rate to 76 times faster than normal, while producing an 80-fold increase in its brightness.


“The major purpose of this program is to develop a better light source for communication purposes," Liu said. “But this is just a first step in the whole story. We have proved that this artificial, manmade material can be designed to enhance light emission and intensity, but the next step will be to apply this on conventional LEDs."


Extreme blinking speed - ultrafast modulation - in blue and green LEDs is a missing link that is necessary for increasing the rate at which information can be sent via optical channels through the open water, such as between ships and submarines, submarines and divers, underwater environmental sensors and unmanned underwater vehicles, or other combinations.


If dramatically improved, optical wireless communications could eventually replace underwater acoustic communications systems for short distance applications. Acoustic communications are limited by slow speed and low data rates and may possibly cause distress to whales, dolphins and other marine life. To do this, they must develop blue and green LED systems that blink one or two orders of magnitude faster than today’s blue and green GaN based LEDs.





UC San Diego graduate student Dylan Lu is working with electrical engineering professor Zhaowei Liu on a project to develop fast-blinking LED systems for underwater optical communication. (Photo credit: Josh Knoff/UC San Diego Jacobs School of Engineering)


In underwater optical wireless communications systems, data is converted from an electrical signal to optical waves that travel through the water from a light source such as a LED to an optical receiver. Blinking blue and green LEDs are already used to transfer information through the water. (Blue and green LEDs are used because their light is less apt to be absorbed by the water than other colours.)


The metamaterials developed by the researchers are synthetic, with properties not found in nature, and are specially designed to accelerate the light generation process.


So far, it’s been difficult to directly convert an electrical signal into an optical signal in LEDs with adequate speed. At the moment, the blink rate for most of these converted signals is less than one gigahertz, a rate slower than the speed of most WiFi signals, Liu said.


The materials are designed to have extremely strong interactions with the light emitters that are specific to the wavelength - or colour- of the emissions. In the new report, the researchers used a dye molecule that gives off a yellow-green hue. So the next step will be to pair the materials with the blue and green LEDs.


“The design of the materials may not be the hardest thing," says UC San Diego graduate student Dylan Lu, the lead author of the Nature Nanotechnology paper, who notes that they will work with LEDs that have been manufactured to a specific industry standard. “I think the major challenge, to apply it to LEDs, will be an integration issue."


Liu recently won a grant from the Office of Naval Research (ONR) to develop the fast-blinking blue and green LED systems, which includes a little more than $500,000 over three years.


Along with Electrical and Computer Engineering professors Paul Yu and Eric Fullerton, Liu aims to eventually test ultrafast blinking LED configurations in San Diego’s ocean waters.


“We started from advances in fundamental material research, and we want to transfer the knowledge to the LED business," says Liu.


 




AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event