Info
Info
News Article

Meaglow's Plasma Tool Advances Semiconductor Manufacturing

As computer chips become smaller and smaller, advanced production techniques, such as Atomic Layer Deposition (ALD) have become more important for depositing thin layers of material.
 Meaglow Ltd. says it has made a breakthrough in semiconductor production.



As computer chips become smaller and smaller, advanced production techniques, such as Atomic Layer Deposition (ALD) have become more important for depositing thin layers of material. ]



Unfortunately the ALD of some materials has been prone to contamination from the plasma sources used. Meaglow has developed a hollow cathode plasma source which has reduced oxygen contamination by orders of magnitude, allowing the reproducible deposition of semiconductor materials with improved quality.

The breakthrough has been shown in a recent publication of oxygen reduction figures for the hollow cathode plasma source supplied last year to the group of Professor Necmi Biyikli, of the Institute of Materials Science and Nanotechnology, at Bilkent University in Turkey. The plasma source was used to upgrade their existing Atomic Layer Deposition (ALD) system by replacing an inductively coupled plasma source. The publication in the Journal of Materials Chemistry C (J. Mater. Chem. C 2 (2014) 2123) shows a reduction in oxygen content of orders of magnitude compared to previous results. There is also a marked improvement in material quality. These results render the older inductively coupled plasma sources obsolete for many applications.

fit existing systems or can be integrated with equipment manufacturers. It can also be utilized in a number of different applications including MBE, and LPMOCVD among others. Interested parties should email info@meaglow.com.



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event