Info
Info
News Article

Dutch Researchers Create Temperature-dependent LED Coating

Liquid crystal composite reorganises when lights are dimmed

Researchers from the Netherlands have found a novel way to ensure the lights of the future not only are energy efficient but also emit a cozy warmth.

"We demonstrated a seemingly simple - but in fact sophisticated - way to create LED lights that change in a natural way to a cozy, warm white colour when dimmed," said Hugo Cornelissen, a principal scientist in the Optics Research Department at Philips Research Eindhoven.

Cornelissen and his colleagues from the Eindhoven University of Technology, Netherlands describe their new LEDs in a paper published today in The Optical Society's (OSA) open-access journal Optics Express.

Incandescent lamps naturally emit warmer colours when dimmed, and Cornelissen said our general preference for redder colours in low-light situations might even have developed far back in time, when humans "experienced the daily rhythm of sunrise, bright daylight at noon, and sunset, each with their corresponding colour temperatures."

LEDs, however, don't normally change colour at different light intensities. Other groups have used multiple colour LEDs and complex control circuitry to make lights that turn redder as the power is turned down. The added complexity comes with its drawbacks: multiple components can increase the cost and the risk of failure, and mixing the light from multiple LEDs without creating colour shadows and other light artifacts is a tricky business.

The Dutch research team tried an entirely different approach to creating cozy LEDs. The scientists had noticed that when they embedded LEDs in coated textiles or transparent materials, the colour of the emitted light would sometimes change. "After finding the root cause of these effects and quantitatively understanding the observed colour shift, we thought of a way to turn the undesired colour changes into a beneficial feature," said Cornelissen.

They began with cold white LEDs, which can be made from blue LEDs surrounded by a material known as a phosphor. Part of the blue light is absorbed by the phosphor and re-emitted at a different colour. The multiple colours combine to form white light.

Cornelissen and his colleagues knew that the colour of the white light could be shifted toward the warmer end of the spectrum if more of the blue light is absorbed and re-emitted by the phosphor. What they describe in the new paper is how they developed a novel - and temperature-dependent - way to create this shift.

The scientists made a coating from a composite of liquid crystal and polymeric material. The composite normally scatters light, but if it is heated above 48 degC, the liquid crystal molecules rearrange and the composite becomes transparent.

When the team covered white LEDs with the coating and turned up the power, the temperature increased enough to make the coating transparent, and the LEDs emitted a cold white colour. When the power was turned down, the coating reorganized into a scattering material that bounced back more of the blue light into the phosphor, generating a warmer glow.

The scientists later fine-tuned the LED design and used multiple phosphors to create lights that comply with industry lighting standards across a range of currents and colours. "We might see products on the market in two years, but first we'll have to prove reliability over time," Cornelissen said. "That is one of the important things to do next."

The team believes the new lights could help speed up the acceptance and widespread use of LED technology, especially in the household and hospitality markets, "where there is a need to create a warm and cozy atmosphere," Cornelissen said.



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event