Info
Info
News Article

Researchers Probe Radiation Resistance Of GaN LEDs

Efficient p-type doping is the key for harsh environments

GaN based devices are attractive for harsh environment electronics because of the high chemical and mechanical stability of GaN. However their breakdown mechanisms under radiation are not well understood, This is because devices consist of many different types of semiconductors, such as p-type and n-type layers in LEDs, and each layer has a different hardness to radiation.

Now researchers at the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) and Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology, and the Japan Atomic Energy Agency (JAEA) have described the physical mechanism of an observed increase in the resistance of p-type GaN irradiated with 380 keV protons compared with n-type GaN.

The GaN-based LED structure shown above was irradiated with protons and the resulting electrical properties measured. Notably, the electrodes to measure the resistance of the p-type and n-type layers were produced independently using the clean room facilities at EIIRIS and the ion implanter in JAEA.

The two terminal resistance of the n-type GaN did not vary from its initial value after 1x1014 cm-2 proton irradiation, and remained of the same order after 1x1015 cm-2 protons. However, a clear increase of the resistance was found in the p-type GaN after 1x1014 cm-2 irradiation. The resistance increased further by six orders of magnitude after 1x1015 cm-2.

According to the researchers, the observed increase of the resistance in p-type GaN is due to the lower initial carrier density than in n-type GaN due to a lack of efficient p-type doping technology for GaN, which is a key for the realisation of novel devices operable in harsh environments.

'Study of Proton Irradiation Effects on p- and n-Type GaN Based-on Two-Terminal Resistance Dependence on 380 keV Proton Fluence' by Hiroshi Okada et al, appeared in IEICE Transactions on Electronics E97-C, 409 (2014). (DOI): 10.1587/transele.E97.C.409 



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event