Info
Info
News Article

Trapped Light Orbits Within H-BN

US team finds 'hot spots' of enhanced electrical fields emerge at specific frequencies

Patterns of orbiting light predicted for spheroids of hexagonal BN  illuminated with a dipole source just above their north poles. These are false-colour plots of predicted hot spots of enhanced electrical fields. Magenta lines trace the periodic orbits on the surfaces set up by particular frequencies.

Last year a team led by University of California, San Diego, physics professor Michael Fogler found that light could be stored within nanoscale granules of hexagonal BN. Now Fogler's research group has published a new paper in the journal Nano Letters that elaborates how this trapped light behaves inside the granules.

The particles of light, called phonon polaritons, disobey standard laws of reflection as they bounce through the granules, but their movement isn't random. Polariton rays propagate along paths at fixed angles with respect to the atomic structure of the material, Folger's team reports. That can lead to interesting resonances.

"The trajectories of the trapped polariton rays are very convoluted in most instances," Fogler said. "However, at certain 'magic' frequencies they can become simple closed orbits."

When that happens "˜hot spots' of strongly enhanced electrical fields can emerge. Fogler's group found those can form elaborate geometric patterns in granules of spheroidal shape.

The polaritons are not only particles but also waves that form interference patterns. When overlaid on the hot contours of enhanced electrical fields, these create strikingly beautiful images.

"They resemble Fabergé eggs, the gem-encrusted treasures of the Russian tsars," Fogler observed.

Beyond creating beautiful images, their analysis illustrates the way light is stored inside the material. The patterns and the magic frequencies are determined not by the size of the spheroid but its shape, that is, the ratio of its girth to length. The analysis revealed that a single parameter determines the fixed angle along which polariton rays propagate with respect to the surface of the spheroids.

Scientists are beginning to find practical uses for materials such as hexagonal BN that manipulate light in usual ways. The theory this work informed could guide the development of applications such as nanoresonators for high-resolution colour filtering and spectral imaging, hyperlenses for subdiffractional imaging, or infrared photon sources.

Fogler and colleagues suggest several experiments that could confirm their prediction of orbiting light using advanced optical techniques, some of which are underway, Fogler said. "The experimental quest to detect orbiting polaritons has already begun."



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event