+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

Sensing light with organic electronics


Researchers develop soft, flexible, and wireless optical sensor based on organic transistors and carbon nanotubes

In a study recently published in Advanced Materials, researchers from SANKEN (The Institute of Scientific and Industrial Research), at Osaka University have developed an optical sensor on an ultrathin, flexible sheet that can be bent without breaking.

Described in the paper 'Ultraflexible Wireless Imager Integrated with Organic Circuits for Broadband Infrared Thermal Analysis', the sensor is so flexible, it will work even after it has been crumpled into a ball.

“Conventional optical sensors are built using inorganic semiconductors and ferroelectric materials,” says Rei Kawabata, lead author of the study. “This makes the sensors stiff and unable to bend. To avoid this problem, we looked at a different way to detect light.”

Instead of traditional light sensors, the researchers use an array of tiny carbon nanotube photodetectors printed on an ultra-thin polymer substrate (less than 5 μm). When exposed to light, the carbon nanotubes heat up, creating a thermal gradient that then generates a voltage signal. Doping the nanotubes with chemical carriers during printing further increases their sensitivity. Using these nanotubes, visible light as well as infrared light such as those related to heat or molecules can be measured.

Along with the carbon nanotube sensors, organic transistors are also printed on the polymer substrate to organise the voltage signals into an image signal. A wireless Bluetooth module is used to read this signal.

“Together with this wireless system, our imager can attach soft and curved objects to analyse their surfaces or insides without damaging them,” says Teppei Araki, senior author of the study.

The researchers built a prototype of the sheet-type optical sensor and tested its ability to sense heat from objects like human fingers or wires as well as glucose flowing through tubes. They found the optical sensor has high sensitivity over a wide range of wavelengths. Moreover, at room temperature and atmospheric conditions, tests showed it has high bending durability and worked even after it was crumpled.

The researchers believe the wireless measurement system and sheet-type optical sensor holds high promise in many applications such as evaluating the quality of liquid without needing to sample it, non-destructive imaging, wearable devices, and soft robotics.

Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: