Loading...
News Article

Nanoparticles in GaAs: the way forward for spintronics?

News

Japanese team demonstrates system that could lead to THz speed computation

For the first time researchers have demonstrated a new way to perform functions essential to future computation three orders of magnitude faster than current commercial devices.

The team lead by Shinobu Ohya, created a nanoscale spintronic semiconductor device that can partially switch between specific magnetic states trillions of times a second (terahertz - THz).

"I hope our research leads to spintronic-based logic and memory devices," said Ohya. "Within decades people should see spintronic smartphones and data centers. We would realise incredible performance gains in areas such as artificial intelligence and beyond."

Spintronics exploits an intrinsic property of electrons called spin - responsible for magnetic behaviour - to perform functions. In spintronic devices, discrete spin magnetisation states represent binary digits.

One way researchers create this property is to irradiate a special magnetic material with short but high-frequency pulses of terahertz radiation, similar to that of airport body scanners. The radiation flips electron spins in this material - ferromagnetic manganese arsenide (MnAs) - and thus its magnetisation, in under a picosecond, three orders of magnitude quicker than transistors switch in microchips. Other researchers have attempted this before but the magnetic change in response to the pulses was only 1 percent, too small to be of practical use.

Now, however, Ohya and his team successfully demonstrated a larger magnitude change in magnetisation of MnAs nanoparticles subjected to terahertz pulses.The MnAs nanoparticles were embedded in a GaAs host matrix.

This greater response of 20 percent means it could be more useful in research and hints at possible future applications. Their trick was to take advantage of the electric component of the terahertz electromagnetic radiation rather than the magnetic component.

"Until now researchers in this area used ferromagnetic metal films to study terahertz modulation of magnetisation, but these impeded the radiation's energy," said Ohya. "Instead we embedded our ferromagnetic nanoparticles in a semiconductor film 100 nanometers thick. This hinders the radiation far less so the terahertz electric field uniformly reaches and flips the spins, and therefore magnetisation, of the nanoparticles."

'Large terahertz magnetisation response in ferromagnetic nanoparticles' by Tomoaki Ishil et al; Appl. Phys. Lett. 114, 062402 (2019)'

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfOâ‚‚ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: