Loading...
News Article

First steps to high temperature GaN memory?

News

Arizona team's epitaxially regrown GaN-on-GaN vertical p-n diodes show promise for next generation space electronics

Scientists at Arizona State University have reported creating a GaN-based memory device that can operate at very high temperatures. The results were published in IEEE Electronic Device Letters (March 2019).

The research is funded by NASA’s Hot Operating Temperature Technology (HOTTech) program to support future missions to Mercury and Venus. Temperatures on the surface of Mercury can reach 430degC while those on Venus can climb to 462degC.

The team observed threshold switching and memory behaviours in epitaxially regrown GaN-on-GaN vertical p-n diodes. The mechanism seems to be linked with the conductive path formed by traps in the insulating layer at the regrowth interface after soft breakdown. They say that the device can reliably switch more than 1000 cycles at both room temperature and 300degC with a small fluctuation on the set and reset voltage.

The set voltage increased with the increasing temperature due to the enhanced thermal de-trapping effect that made it harder to form conductive path at high temperatures. The device showed memory behaviours when the reset voltage was higher than 4.4 V. They think this is the first stage towards developing GaN-based memory devices.

In an article in IEEE Spectrum magazine, Yuji Zhao, a scientist at Arizona State University who worked on the project, explained that the device’s performance was down to the etching and regrowth processes used during fabrication. After several layers of GaN were deposited, some areas were etched away with plasma, then regrown. That created an interface layer with vacancy sites that are missing nitrogen atoms, said Zhao. “The interface layer is critical for the memory effect,” he says. The researchers believe that the nitrogen vacancies are responsible for capturing and releasing electrons, giving rise to high- and low-resistance states - or 0 and 1 states - in the device.

Above 350 degC, the device lost its memory effect. But its performance returned after the device was brought back to room temperature, says Zhao. “This device is actually very robust,” he says.

Zhao and his team are now testing another version of the device for stability up to 500degC, and for long-term stability.

'Threshold Switching and Memory Behaviors of Epitaxially Regrown GaN-on-GaN Vertical p-n Diodes With High Temperature Stability' by Kai Fu et al; IEEE Electronic Device Letters (March 2019)

SPONSOR MESSAGE

Secure Your Hydrogen Supply

A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.

Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.

Take control with Nel on-site hydrogen generation.

Read more
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website