Loading...
News Article

Sanan Expands with 150mm GaN-on-Silicon Process

News

China's first 6-inch compound semiconductor wafer foundry targets high voltage AC/DC and DC/AC power electronics applications

Sanan IC, China's first 6-inch compound semiconductor wafer foundry, has announced the commercial release of its 150mm GaN on silicon wafer foundry services intended for the latest high voltage AC/DC and DC/AC power electronics applications.

Sanan IC˙s new G06P111 is a 650V enhanced-mode high-electron-mobility transistor (E-HEMT) GaN process which adds to the company˙s power electronics wafer foundry portfolio of wide bandgap (WBG) compound semiconductors that includes 100mm and 150mm SiC (SiC) for high voltage Schottky Barrier Diodes (SBD).

Building on years of high volume GaN manufacturing experience by Sanan Optoelectronics Inc., its parent company, for the LED market, Sanan IC is able to complement its foundry services with in-house MOCVD growth capabilities of high voltage, low leakage GaN-on-silicon epitaxial wafers with high uniformity.

"The launch of our 650V GaN E-HEMT process technology exemplifies our commitment to advanced compound semiconductor manufacturing for serving the global marketˇ, said Jasson Chen, assistant general manager of Sanan IC. "We view GaN-on-silicon as a complimentary technology to SiC as key wide bandgap semiconductors of choice for today˙s high voltage, high power electronics industry. Component suppliers and system designers are migrating to wide bandgap semiconductors over traditional silicon for enhanced performance, efficiency, and reliability in high power analog designs. Sanan IC is well positioned for success in serving this high growth, large-scale power electronics marketˇ.

The company˙s G06P11 GaN-on-silicon process, having passed the JEDEC standard for process reliability qualification, offers device structures for 650V E-mode FETs which support a drain-to-source on-state resistance RDS(on) range from 50mΩ to 400mΩ. Engineered for low leakage, low gate charge, high current density, and low dynamic specific on resistance (Rsp), it enables ultra-fast switching compact designs for high temperature operation. Following later this year would be the launch of a 200V GaN E-HEMT process as well as a second generation SiC SBD process with a merged PiN Schottky (MPS) diode structure.

According to market research firm Yole Developpement (Yole), the GaN power device market is forecasted to have a value over $423M by 2023 with a compound annual growth rate (CAGR) of 93 percent from 2017 to 2023.

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: