News Article

Researchers Develop High-Power GaN VLEDs On Silicon


Optimised metallisation scheme with SiO2 current blocking layer could deliver cheaper and reliable next-generation solid-state lighting devices

Researchers from Wuhan University in China and the LED company Changelight have reported developing high power, reliable GaN-based vertical LEDs (VLEDs) on 4-inch p-type silicon substrate. They achieved this using an optimised metallisation scheme with an SiO2 current blocking layer. In addition, by surface texturing the emitting surface of the VLED with KOH wet etching, they say they have boosted the light extraction efficiency.

“We may have found access to more cheap and reliable next-generation solid-state lighting devices," said Shengjun Zhou who led the Wuhan team.

Deposited metallisation schemes can buckle and delaminate in humid environments, which is a major concern for the reliability of VLEDs. In the study, published in Optics Express, the researchers demonstrated that the metallisation reliability can be improved by depositing Pt/Ti protective layers surrounding the Ag/TiW films to protect the interface from environmental humidity.

Figure 1 above shows optical microscope images of different metallisation scheme designs suffering from moisture in the air: (a) Conventional multilayer metallisation stacks without lateral protection; (b) Multilayer metallisation stacks with Pt/Ti capping layers surrounding the Ag/TiW films.

Light absorption by the metal contacts is one source of optical loss sources in LEDs. However, most of current is crowded in proximity of the electrodes due to the non-ideal conductivity of the semiconductor layers, leading to a localisation of emission around the electrode pads.

The researchers show that 'current crowding' can be significantly relieved by the insertion of a SiO2 current blocking layer under the p-electrode. A more uniform current distribution with the application of SiO2 current blocking layer was demonstrated using simulation results.

Figure 2. (a) Optical microscope images of the L-LED and V-LED. (b) Simulated current density distribution in the active layers of L-LED, V-LED and V-LED with SiO2 CBL. (c) Calculated current density profiles along the dotted line in (b).

The researchers also took advantage of KOH wet chemical etching to texture the emitting surface of VLEDs for a higher light extraction efficiency. Highly integrated surface textures consisted of periodic hemispherical dimples and hexagonal pyramids was formed after wet etching using KOH solution. Finite difference time domain (FDTD) simulation reveal such surface morphology not only reduces the Fresnel reflection but also scatters the light outward with a broad distribution, enabling a higher light extraction efficiency.

'High-power and reliable GaN-based vertical light-emitting diodes on 4-inch silicon substrate' by Shengjun Zhou et al; Optics Express, Vol. 27, No. 20, 30 Sep 2019

AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.



Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
Live Event