Loading...
News Article

BaZrS3 films hold promise for solar cells and LEDs

News

Films combine exceptionally strong light absorption with good charge transport

Scientists have created thin films made from BaZrS3 - a chalcogenide perovskite - and confirmed that the materials have useful electronic and optical properties predicted by theorists. The films combine exceptionally strong light absorption with good charge transport - two qualities that make them ideal for applications such as photovoltaics and LEDs.

In solar panels, for example, experimental results suggest that BaZrS3 films would be much more efficient at converting sunlight into electricity than traditional silicon-based materials with identical thicknesses, says lead researcher Hao Zeng, professor of physics in the University at Buffalo College of Arts and Sciences. This could lower solar energy costs, especially because the new films performed admirably even when they had imperfections. (Manufacturing nearly flawless materials is typically more expensive, Zeng explains.)

"For many decades, there have been only a handful of semiconductor materials that have been used, with silicon being the dominant material," Zeng says. "Our thin films open the door to a new direction in semiconductor research. There's a chance to explore the potential of a whole new class of materials."

The study was published in November in the journal Nano Energy.

The project - funded by a US Department of Energy (DOE) SunShot award and National Science Foundation (NSF) Sustainable Chemistry, Engineering and Materials award - included contributions from researchers at UB; Taiyuan Normal University, Southern University of Science & Technology, Xi'an Jiaotong University and the Chinese Academy of Sciences, all in China; Los Alamos National Laboratory; and Rensselaer Polytechnic Institute.

Experiments inspired by theoretical predictions

In recent years, theorists have calculated that various chalcogenide perovskites should exhibit useful electronic and optical properties, and these predictions have captured the interest and imagination of experimentalists like Zeng.

BaZrS3 is not a totally new material. Zeng looked into the history of the compound, and found information dating back to the 1950s. "It has existed for more than half a century," he says. "Among earlier research, a company in Niagara Falls produced it in powder form. I think people paid little attention to it."

The researchers crafted their BaZrS3 films by using a laser to heat up and vapourise barium zirconium oxide. The vapour was deposited on a sapphire surface, forming a film, and then converted into the final material through a chemical reaction called sulphurization.

"Semiconductor research has traditionally been highly focused on conventional materials," Hui says. "This is an opportunity to explore something new. Chalcogenide perovskites share some similarities to the widely researched halide perovskites, but do not suffer from the toxicity and instability of the latter materials."

"Now that we have a thin film made from BaZrS3, we can study its fundamental properties and how it might be used in solar panels, LEDs, optical sensors and other applications," Wei says.

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfOâ‚‚ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: