Loading...
News Article

Giving photons a sense of direction for better LEDs

News

UC Santa Barbara researchers show how metasurface design methods can make LED light act more like lasers

UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

In a paper published in Nature Photonics, UCSB electrical and computer engineering professor Jonathan Schuller and collaborators describe this new approach, which could allow a wide variety of LED devices - from virtual reality headsets to automotive lighting - to become more sophisticated and sleeker at the same time.

"What we showed is a new kind of photonic architecture that not only allows you to extract more photons, but also to direct them where you want," said Schuller. This improved performance, he explained, is achieved without the external packaging components that are often used to manipulate the light emitted by LEDs.

Light in LEDs is generated in the semiconductor material when excited, negatively charged electrons traveling along the semiconductor's crystal lattice meet positively-charged holes (an absence of electrons) and transition to a lower state of energy, releasing a photon along the way. Over the course of their measurements, the researchers found that a significant amount of these photons were being generated but were not making it out of the LED.

"We realised that if you looked at the angular distribution of the emitted photon before patterning, it tended to peak at a certain direction that would normally be trapped within the LED structure," Schuller said. "And so we realised that you could design around that normally trapped light using traditional metasurface concepts."

The design they settled upon consists of an array of 1.45-micrometer long GaN nanorods on a sapphire substrate, in which quantum wells of InGaN were embedded, to confine electrons and holes and thus emit light. In addition to allowing more light to leave the semiconductor structure, the process polarises the light, which co-lead author Prasad Iyer said, "is critical for a lot of applications."

Nanoscale Antennae

The idea for the project came to Iyer a couple of years ago as he was completing his doctorate in Schuller's lab, where the research is focused on photonics technology and optical phenomena at subwavelength scales. Metasurfaces - engineered surfaces with nanoscale features that interact with light - were the focus of his research.

"A metasurface is essentially a subwavelength array of antennas," said Iyer, who previously was researching how to steer laser beams with metasurfaces. He understood that typical metasurfaces rely on the highly directional properties of the incoming laser beam to produce a highly directed outgoing beam.

LEDs, on the other hand, emit spontaneous light, as opposed to the laser's stimulated, coherent light.

"Spontaneous emission samples all the possible ways the photon is allowed to go," Schuller explained, so the light appears as a spray of photons traveling in all possible directions. The question was could they, through careful nanoscale design and fabrication of the semiconductor surface, herd the generated photons in a desired direction?

"People have done patterning of LEDs previously," Iyer said, but those efforts invariably split the into multiple directions, with low efficiency. "Nobody had engineered a way to control the emission of light from an LED into a single direction."

Right Place, Right Time

It was a puzzle that would not have found a solution, Iyer said, without the help of a team of expert collaborators. GaN is exceptionally difficult to work with and requires specialized processes to make high-quality crystals. Only a few places in the world have the expertise to fabricate the material in such exacting design.

UC Santa Barbara, home to the Solid State Lighting and Energy Electronics Center (SSLEEC), is one of those places, say the researchers. With the expertise at SSLEEC and the campus's world-class nanofabrication facility, the researchers designed and patterned the semiconductor surface to adapt the metasurface concept for spontaneous light emission.

"We were very fortunate to collaborate with the world experts in making these things," Schuller said.

'Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces' by Prasad P. Iyer et al; Nature Photonics 01 June (2020)

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfOâ‚‚ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: