Loading...
News Article

New way to measure optical absorption

News

Tohoku University research fndings confirm the accuracy of omnidirectional photoluminescence (ODP) spectroscopy for probing semiconductor crystals

Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

"Our findings confirm the accuracy of ODPL measurements and show the possibility to measure optical absorption of crystals by the ODPL method, making the process much easier," says Tohoku University materials scientist Kazunobu Kojima.

Huge strides have been made in the development of efficient electronic and optical devices, e.g. ultraviolet, blue, and white LEDs as well as high-frequency transistors, that use nitride semiconductors - specifically AlGaN, InGaN, and GaN.

GaN is a suitable material for power devices on account of its large bandgap energy, high breakdown field and high saturation electron velocity.

There is a strong need for manufacturers to be able to detect crystal defects and test their efficiency. Within such high quality crystals, the concentration of nonradiative recombination centres (NRC) serves as a good predictor of the crystals quality.

Annihilation spectroscopy, deep-level transient spectroscopy and photoluminescence (PL) spectroscopy are among the estimation techniques for detecting point defects which are the source of NRCs. PL spectroscopy is attractive because it requires no electrodes and contacts.

First proposed by Kojima and his research team in 2016, ODPL is a novel form of PL spectroscopy that measures PL intensity by using an integrating sphere to quantify the quantum efficiency of radiation in sample semiconductor crystals. It is non-touching, non-destructive and good for large-sized GaN wafers for room-lighting LEDs and transistors for electric vehicles. Yet, the origin of the two-peak structure formed in ODPL had remained elusive until now.

Kojima and his team combined ODPL and standard PL (SPL) spectroscopy experiments on a GaN crystal at various temperatures (T) between 12 K and 300 K. The intensity ratio (r) of the ODPL spectra to SPL spectra for the NBE emission of GaN showed a linearly decreasing slope for photon energy (E) below a fundamental absorption edge energy (Eabs).The slope obtained in r corresponded to the so-called Urbach-Martienssen (U-M) absorption tail, which is observed in many semiconductor crystals.

Therefore, the origin of the two-peak structure in the ODPL spectra around the NBE emission of the GaN crystal exists because of the U-M tail.

'Urbach–Martienssen tail as the origin of the two-peak structure in the photoluminescence spectra for the near-band-edge emission of a freestanding GaN crystal observed by omnidirectional photoluminescence spectroscopy' by K. Kojimaa) and S. F. Chichibu; Appl. Phys. Lett. 117, 171103 (2020)

SPONSOR MESSAGE

Secure Your Hydrogen Supply

A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.

Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.

Take control with Nel on-site hydrogen generation.

Read more
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website