Info
Info
News Article

New Perovskite Possibilities

News

UCLA researchers discover new ways to improve the design of perovskite-based solar cells and LED

UCLA materials scientists and colleagues have discovered that perovskites have a previously unused molecular component that can further tune their electronic properties.

Named after Russian mineralogist Lev Perovski, perovskite materials have a crystal-lattice structure of inorganic molecules like that of ceramics, along with organic molecules that are interlaced throughout. Up to now, these organic molecules appeared to only serve a structural function and could not directly contribute to perovskites' electronic performance.

Led by UCLA, a new study shows that when the organic molecules are designed properly, they not only can maintain the crystal lattice structure, but also contribute to the materials' electronic properties. This discovery opens up new possibilities to improve the design of materials that will lead to better solar cells and LEDs. The study detailing the research was recently published in Science.

"This is like finding an old dog that can play new tricks," said Yang Yang, the Carol and Lawrence E. Tannas Jr. Professor of Engineering at the UCLA Samueli School of Engineering, who is the principal investigator on the research. "In materials science, we look all the way down to the atomic structure of a material for efficient performance. Our postdocs and graduate students didn't take anything for granted and dug deeper to find a new pathway."

In order to make a better-performing perovskite material, the researchers incorporated a specially designed organic molecule, a pyrene-containing organic ammonium. On its exterior, the positively charged ammonium molecule connected to molecules of pyrene -- a quadruple ring of carbon atoms. This molecular design offered additional electronic tuneability of perovskites.

"The unique property of perovskites is that they have the advantage of high-performance inorganic semiconductors, as well as easy and low-cost processability of polymers," said study co-lead author Rui Wang, a UCLA postdoctoral scholar in materials science and engineering. "This newly enhanced perovskite material now offers opportunities for improved design concepts with better efficiency."

To demonstrate perovskites' added effectiveness, the team built a photovoltaic (PV) cell prototype with the materials, and then tested it under continuous light for 2,000 hours. The new cell continued to convert light to energy at 85 percent of its original efficiency. This contrasts with a PV cell made of the same materials, but without the added altered organic molecule, which retained only 60 percent of its original efficiency.

'Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations' by Jingjing Xue et al; Science 05 Feb 2021: Vol. 371, Issue 6529



AngelTech Live III: Join us on 12 April 2021!

AngelTech Live III will be broadcast on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and will feature online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

Thanks to the great diversity of the semiconductor industry, we are always chasing new markets and developing a range of exciting technologies.

2021 is no different. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. We shall consider a roadmap for this device, along with technologies for boosting its output.

We shall also look at microLEDs, a display with many wonderful attributes, identifying processes for handling the mass transfer of tiny emitters that hold the key to commercialisation of this technology.

We shall also discuss electrification of transportation, underpinned by wide bandgap power electronics and supported by blue lasers that are ideal for processing copper.

Additional areas we will cover include the development of GaN ICs, to improve the reach of power electronics; the great strides that have been made with gallium oxide; and a look at new materials, such as cubic GaN and AlScN.

Having attracted 1500 delegates over the last 2 online summits, the 3rd event promises to be even bigger and better – with 3 interactive sessions over 1 day and will once again prove to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FOR FREE

VIEW SESSIONS

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event