Info
Info
News Article

ON Semi Announce New 650V SiC MOSFETs

News

Superior switching and improved reliability deliver power density improvements in a variety of challenging applications

ON Semiconductor has announced a new range of SiC MOSFET devices for demanding applications where power density, efficiency and reliability are key considerations. By replacing existing silicon switching technologies with the new SiC devices, designers will achieve significantly better performance in applications such as electric vehicles, on-board chargers, solar inverters, server power supply units, telecoms and uninterruptible power supplies.

ON Semiconductor's new automotive AECQ101 and Industrial grade qualified 650V SiC MOSFETs are based upon a new wide bandgap material that provides superior switching performance and improved thermals when compared to silicon. This results in improved efficiency at the system level, enhanced power density, reduced electromagnetic interference (EMI) and reduced system size and weight.

The new generation of SiC MOSFETs employ a novel active cell design combined with advanced thin wafer technology enabling best in class figure of merit Rsp (Rdson*area) for 650 V breakdown voltage. The NVBG015N065SC1, NTBG015N065SC1, NVH4L015N065SC1 and NTH4L015N065SC1 have the lowest Rdson (12 mOhm) in the market in D2PAK7L and To247 packages.

This technology is also optimised around energy loss figure of merits, optimizing performance in automotive and industrial applications. An internal gate resistor (Rg) allows more flexibility to designers eliminating the need to slow down devices artificially with external gate resistors. Higher surge, avalanche capability and short circuit robustness all contribute to enhanced ruggedness that delivers higher reliability and longer device lifetimes.

Commenting on the new releases, Asif Jakwani, senior vice president of the Advanced Power Division at ON Semiconductor said: “In modern power applications such as on-board chargers (OBC) for EV and other applications including renewable energy, enterprise computing and telecom, efficiency, reliability and power density are constant challenges for designers.

"These new SiC MOSFETs significantly improve performance over the equivalent silicon switching technologies, allowing engineers to meet these challenging design goals. The enhanced performance delivers lower losses that enhance efficiency and reduce thermal management needs as well as reducing EMI. The end result of using these new SiC MOSFETs is a smaller, lighter, more efficient and more reliable power solution.”



AngelTech Live III: Watch the virtual event ON-DEMAND!

AngelTech Live III was broadcast live on 12 April 2021, 10am BST, rebroadcast on 14 April (10am CTT) and 16 April (10am PST) and features online versions of the market-leading physical events: CS International and PIC International PLUS a brand new Silicon Semiconductor International Track!

The event covered the whole spectrum of key developments affecting the compound semiconductor industry. Over the last few months interest in deep-UV LEDs has rocketed, due to its capability to disinfect and sanitise areas and combat Covid-19. This was considered a roadmap for this device, along with technologies for boosting its output.

With 3 interactive sessions over 1 day AngelTech Live III proved to be a key event across the semiconductor and photonic integrated circuits calendar.

So make sure you sign up today and discover the latest cutting edge developments across the compound semiconductor and integrated photonics value chain.

REGISTER FREE

VIEW ON-DEMAND

Info
×
Search the news archive

To close this popup you can press escape or click the close icon.
×
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
X
Info
X
Info
{taasPodcastNotification}
Live Event