Loading...
News Article

Perovskite memory devices with ultra-fast switching speed

News

Korean researchers develop resistive switching memories with switching speeds of 20 ns

A research team led by Jang-Sik Lee of Pohang University of Science and Technology (POSTECH) in Korea has successfully developed the halide perovskite-based memory with ultra-fast switching speed. The findings from this study were published in Nature Communications on June 10, 2021.

Resistive switching memory is a promising contender for next-generation memory device due to its advantages of simple structure and low power consumption. Various materials have been previously studied for resistive switching memory. Among them, halide perovskites are receiving much attention for use in the memory because of low operation voltage and high on/off ratio. However, halide perovskite-based memory devices have limitations of slow switching speed which hinder their practical application in memory devices.

To this, the researchers at POSTECH (Jang-Sik Lee, Donghwa Lee, Youngjun Park, and Seong Hun Kim) have successfully developed ultra-fast switching memory devices using halide perovskites by using a combined method of first-principles calculations and experimental verification. From a total of 696 compounds of halide perovskites candidates, Cs3Sb2I9 with a dimer structure was selected as the best candidate for memory application. To verify the calculation results, memory devices using the dimer-structured Cs3Sb2I9 were fabricated.

They were then operated with an ultra-fast switching speed of 20 ns, which was more than 100 times faster than the memory devices that used the layer-structured Cs3Sb2I9. In addition, many of the perovskites contain lead (Pb) in the materials which has been raised as an issue. In this work, however, the use of lead-free perovskite eliminates such environmental problems.

"This study provides an important step toward the development of resistive switching memory that can be operated at an ultra-fast switching speed," remarked Lee on the significance of the research. He added, "this work offers an opportunity to design new materials for memory devices based on calculations and experimental verification."

'Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory' by Youngjun Park et al; Nature Communications, 10 June 2021

SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfOâ‚‚ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: