News Article

AlScN Project Wins German Innovation Prize


EdgeLimit project shows how AlScN amplifiers can radically improve the power density and efficiency of high-frequency amplifiers in 5G base stations

The Fraunhofer Institutes IAF and IIS together with the University of Freiburg/INATECH have won second place with their joint project 'EdgeLimit - Evaluation of Power Electronics in Modern Edge Cloud Systems' in the innovation competition 'Electronics for Energy-Saving Information and Communications Technology' launched by the German Federal Ministry of Education and Research (BMBF).

The project EdgeLimit presents a concept for the use of novel power semiconductors for high-frequency amplifiers in 5G base stations for the new mm-wave frequency range at 26-34 GHz based on aluminum scandium nitride (AlScN).

The project not only offers enormous potential savings in energy consumption and CO2 emissions, but also an extraordinary level of innovation in the field of high-frequency electronics with a major leverage effect for microelectronics in Germany. This finds expression in the significant participation of industry in the second phase of the project, with a planned cooperation with Nokia Bell Labs, United Monolithic Semiconductors GmbH, Deutsche Telekom AG (associated) and Nokia Solutions and Networks GmbH & Co. KG.

Semiconductor technology for more efficient antenna amplifiers

Modern networked ICT systems increasingly have capacities for collecting and processing information at the edge of the network in addition to the central data-processing infrastructures (cloud), as well as systems for transferring data between cloud and edge. “This is where the EdgeLimit project comes in. Our goal is to realize a complete antenna system, a so-called Remote Radio Head (RRH), which will enable more energy-efficient transmission in the millimeter-wave range of 5G while halving losses at the same time,” explains project coordinator Rüdiger Quay, deputy director of Fraunhofer IAF and professor for Energy-Efficient Radio-Frequency Electronics.

“We are working, for example, on intelligent edge solutions that take energy consumption into account during the design phase and reduce it to a minimum,” says Albert Heuberger, Director of the Fraunhofer Institute for Integrated Circuits. By looking at the energy consumption of the radio units (massive MIMO antennas) in the 5G Testbed Industry 4.0 at Fraunhofer IIS, energy-efficient, distributed, secure edge cloud systems can be built and tested.

The project partners are using the novel power semiconductor AlScN to develop pioneering high-frequency components. “The semiconductor technology we are pursuing, with which we have already gained a lot of experience at IAF, has the potential to fundamentally increase power efficiency in integrated circuits (MMICs) through better matching, higher gain and higher power density,” elucidates Quay. Due to its high current-carrying capacity, AlScN allows significant advantages over established semiconductors such as silicon, GaAs and AlGaN/GaN. Based on this material, EdgeLimit aims to at least double power efficiency at the amplifier-level in new cellular frequencies as well as halve losses in power converters.

Intelligent and demand-oriented ICT

More energy-efficient electronics alone cannot counter the exponentially increasing energy consumption of ICT. The horizon of physical energy efficiency is closer than that of the realizable data throughput, which is growing faster and thus promoting a rebound effect. One solution is the intelligent and adaptive management of mobile communications systems, which ensures that energy is used as needed—an approach with enormous energy-saving potential.

To enable smart ICT, innovative power electronics architectures are required that allow electronics to be switched on and off as needed without compromising the latency of data transmissions.

“At the network level, large amounts of energy should be saved by intelligently networking transmission modules and antennas with on-demand control, for example in factory networks such as the new Bosch semiconductor fab in Dresden or for fast video transmission to cars,” says Quay.

“For this purpose, we are developing the necessary high-frequency electronics in EdgeLimit that are capable of being connected to intelligent network management. Because one thing is certain: In the further development of ICT, we must give resource efficiency at least the same priority as performance enhancement. This is the only way to reduce CO2 emissions as digitization advances.”

CS International to return to Brussels – bigger and better than ever!

The leading global compound semiconductor conference and exhibition will once again bring together key players from across the value chain for two-days of strategic technical sessions, dynamic talks and unrivalled networking opportunities.

Join us face-to-face between 28th – 29th June 2022

  • View the agenda.
  • 3 for the price of 1. Register your place and gain complementary access to TWO FURTHER industry leading conferences: PIC International and SSI International.
  • Email  or call +44 (0)24 7671 8970 for more details.

*90% of exhibition space has gone - book your booth before it’s too late!


Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
Live Event