Loading...
News Article

Consortium to generate clean energy using photonics

News

European SPOTLIGHT group is developing a new process that uses sunlight and LEDs to make methane and methanol

A European consortium is developing a new process that uses sunlight and LEDs to turn carbon dioxide and green hydrogen into clean energy products like methane gas and methanol liquid fuel.

Called 'SPOTLIGHT', the consortium is creating a chemical process as well as a photonics device to convert carbon dioxide and green hydrogen into the chemical fuel methane and carbon monoxide as a starting material for creating methanol liquid fuel.

With their new device, SPOTLIGHT is looking to process up to one megaton of carbon dioxide per year, making them complementary to existing large-scale carbon capture and utilization processes.

While liquid methanol is used to make safe, clean energy for cars, wind turbines and energy storage applications, it is usually created by reforming natural gas with steam and then converting and distilling the resulting gas mixture into pure methanol. Changing carbon dioxide into a useful product like methanol is typically done with many chemicals in an 'alkali hydroxide–based system’.

Nicole Meulendijks, the project coordinator at SPOTLIGHT, said: "Climate change, one of the biggest societal challenges of our day, can be tackled with light technologies by taking greenhouse gases that trap heat close to the Earth and turning them into something useful.

“Our goal is to develop and validate a photonic device and chemical process concept for the sunlight-powered conversion of CO2 and green H2 to the chemical fuel methane (CH4, Sabatier process), and to carbon monoxide (CO, reverse water gas shift (rWGS) process) as starting material for the production of the chemical fuel methanol (CH3OH). Both CH4 and CH3OH are compatible with our current infrastructure and suited for multiple applications such as car fuel, energy storage, and starting material to produce valuable chemicals.

“SPOTLIGHT’s photonic device will comprise a transparent flow reactor, optimised for light incoupling in the catalyst bed. Furthermore, it will comprise secondary solar optics to concentrate natural sunlight and project it onto the reactor, and an energy-efficient LED light source to ensure continuous 24/7 operation. SPOTLIGHT's catalysts will be plasmonic catalysts, capable of absorbing the entire solar spectrum.”

Offsetting 16 percent of global CO2

The chemical processes proposed by SPOTLIGHT can be scaled up to offset the CO2 emitted by small to medium ‘point sources’ or places that emit carbon dioxide with emissions lower than one megaton per year.

Meulendijks said: “Worldwide, there are approximately 11,000 carbon dioxide 'point sources' with emissions lower than 1 Mt/year. When combined, all these point sources emit a cumulative annual total of around 2.7 billion tonnes of CO2– approximately 16 percent of all CO2 from point sources globally every year. So, potentially, the process we envision at SPOTLIGHT could convert 2.7 Billion tonnes of CO2 per year into useful chemical fuels.

“The photonic device and sunlight-powered process that SPOTLIGHT will develop are modular and can be tailored to the size of CO2 sources up to 1 Mt p.a. with sufficient land coverage of approximately five football fields. Addressing all current carbon dioxide point sources up to that size with SPOTLIGHT's Sabatier process, a total of 2,700 Mt of CO2 per annum (16 percent of all CO2 from point sources) could be converted to 982 megatonnes of chemical fuel methane, or 982 x 109 kg x 50 MJ·kg-1 = 49.1 EJ p.a.

The consortium is coordinated in Netherlands by Nederlandse Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO, and is made up of partners from: Netherlands – Chemtrix Bv, Signify Bv; Belgium - Universiteit Hasselt, Interuniversitair Micro-Electronica Centrum; Switzerland – Eidgenoessische Technische Hochschule Zuerich, Ecole Polytechnique Federale De Lausanne; Germany – Fraunhofer Gesellschaft Zur Foerderung Der Angewandten Forschung E.V., Deutsches Zentrum Fur Luft - Und Raumfahrt Ev; Italy – Rina Consulting Spa, Acea Pinerolese Industriale Spa; Spain – Fundacion Para El Desarrollo De Las Nuevas Tecnologias Del Hidrogeno En Aragon.

SPONSOR MESSAGE

Secure Your Hydrogen Supply

A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.

Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.

Take control with Nel on-site hydrogen generation.

Read more
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website