Loading...
News Article

Keeping It Cool With Power Electronics

News

NREL reveals latest research projects in sustainable aviation, grid storage, and energy-efficient computing

NREL has announced that it is partnering on a series of new research projects in sustainable aviation, grid storage, and energy-efficient computing with support from the US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) programs, .

“Our team is collaborating with industry partners, such as General Electric, Cummins, BorgWarner, and John Deere, to optimise the thermal performance of power-dense wide band gap (WBG) inverters and electric motors,” said NREL senior researcher Sreekant Narumanchi. “The lighter overall weight, footprint, and improved performance of these designs offer clear benefits to fuel efficiency and operating costs for electrified mobility applications.”

An ongoing ARPA-E collaboration with Stanford University is “Exploring the Limits of Cooling for Extreme Heat Flux Applications,” with improved chip thermal management for data centres and power electronics. Stanford University researchers are developing a novel cooling technology, the Extreme Heat Flux Micro- (EHFμ-) Cooler, supported by NREL’s experimental reliability evaluation of the thermal management technologies. The EHFμ-Cooler significantly reduces device temperature, resulting in heat flux dissipation over 1,000 W/cm2 to cool the device.

NREL’s thermal management research also includes two projects within the ARPA-E Aviation-class Synergistically Cooled Electric-motors with iNtegrated Drivers (ASCEND) program to support the development of innovative lightweight and ultra-efficient electric motors, motor drives, and thermal management systems for sustainable aviation.

The first project, led by the General Electric Global Research centre, will design a 2-MW fully integrated all-electric aircraft powertrain and demonstrate a 350-kW lab-scale prototype to enable zero carbon emission narrow-body commercial aircraft with all-electric propulsion. The second project, led by Marquette University, focuses specifically on building a high-power-density motor for aviation propulsion. NREL’s support for these projects includes thermal management modeling, analysis, and characterization of the advanced cooling concepts and inverter components, alongside thermomechanical design and techno-economic analysis for various power electronics, electric motor, and integrated electric drive components.

ARPA-E recently selected three new projects backed by NREL expertise. 'Bringing Three-Dimensional Packaging and Thermal Management to Power Electronics', led by Synteris, will include NREL research to improve the thermal management, power density, performance, and lifetime of ceramic packaging for power electronic modules. 'Repurposing Infrastructure for Gravity Storage Using Underground Potential Energy', led by NREL, will use electromechanical system-level modeling to determine drivetrain component sizing to convert inactive oil and gas wells into energy storage devices. 'Substation in a Cable for Adaptable, Low-Cost Electrical Distribution (SCALED)', led by Virginia Polytechnic Institute and State University, will include NREL thermal management research to develop compact, high-performance power electronics components in the context of grid applications.

“Each of these projects involve exciting new collaborations with industry and university partners—as well as collaborations across groups at NREL—to develop pioneering power modules, packages, converters, and drivetrain components impacting multiple energy efficiency and renewable energy applications,” Narumanchi said.

Pictured above is NREL researcher Gilbert Moreno preparing experiments on the dielectric fluid loop to evaluate heat transfer of electrical system component. (Photo by Dennis Schroeder, NREL)

Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: