Loading...
News Article

Penn State to lead $7.5 Million study of radiation effects on GaN

News

Interdisciplinary team aims to predict and mitigate radiation-induced damage of wide bandgap semiconductors

To better predict and mitigate radiation-induced damage of wide bandgap semiconductors, the US Department of Defense has awarded a team led by Penn State, a five-year, $7.5 million Defense Multidisciplinary University Research Initiative Award.

According to Rongming Chu who will spearhead the project, wide bandgap semiconductors, such as GaN, are inherently more resistant to radiation due to stronger atomic bonds, however, researchers have yet to reach the full potential of radiation hardness in wide bandgap semiconductor electronics.

“Preliminary studies have indicated that the radiation resistance appears to be limited by defects in the semiconductors, rather than by the material’s intrinsic properties,” Chu said. “In this project, we seek to understand the radiation effects of these defects so that we may develop a strategy to redesign the wide bandgap semiconductor device for the ultimate radiation hardness.”

Examples of defects include unwanted impurities, displacement of atoms from their original sites and dangling atomic bonds at the interface between dissimilar materials.

“There is a risk of these defects becoming electrically active under a high electric field, with energetic electrons, causing detrimental effects to device performance,” Chu said. “Today’s wide bandgap semiconductor electronic devices are designed such that this risk is minimised under normal operating conditions. However, radiation can force the device out of its normal operating condition by exciting additional energetic electrons interacting with the pre-existing defects. It can also knock atoms out of their original positions, modifying pre-existing defects and generating new defects.”

The project will have an interdisciplinary team. Collaborators include Patrick M. Lenahan, distinguished professor of engineering science and mechanics; Miaomiao Jin, assistant professor of nuclear engineering; and Blair R. Tuttle, associate professor of physics, all from Penn State; and Tania Roy, University of Central Florida; B. Reeja Jayan, Carnegie Mellon University, and Michael E. Flatté, University of Iowa.

Chu noted that, at Penn State, the team will use tools and experts affiliated with the Radiation Science and Engineering Center and the Nanofabrication and Materials Characterisation User Facilities at the Materials Research Institute.

“The strength of our project comes from a combination of expertise: my research group’s capabilities on GaN devices, Lenahan’s expertise in defect spectroscopy, Jin’s radiation damage modeling, Tuttle’s defect theory work, Roy’s electrical characterisation of radiation effects, Jayan’s defect structure characterisation and Flatté’s transport theory work,” Chu said. “The teamwork also extends beyond the investigators of this MURI project — especially Michael Lanagan, professor of engineering science and mechanics, who was very instrumental in coordinating this multidisciplinary team effort.”

The grant will support 16 graduate students, including 11 at Penn State, to perform multidisciplinary research encompassing physics, computation, materials science and engineering and electrical engineering as they pursue a variety of master’s degrees and doctorates.

“Not only will the research prepare next-generation technologists to take on technical challenges, but, through our collaborative work with national laboratories and industry stakeholders, the students will also learn the professional skills needed bridge fundamental research to real-world applications,” Chu said.

SPONSOR MESSAGE

Secure Your Hydrogen Supply

A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.

Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.

Take control with Nel on-site hydrogen generation.

Read more
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website