Loading...
News Article

Cubic GaN on large-area silicon (100) dies

News

Gallium Nitride (GaN) and its alloys (i.e., III-nitride semiconductors) are the backbones of solid-state lighting, and the next-generation RF and power electronics. Today, most research and development in this material system are focused on its conventional, hexagonal (i.e., wurtzite) phase although its cubic (i.e., zincblende) phase has more inherent advantages such as: No polarization in the <100> growth direction, smaller bandgap, smaller electron-heavy hole effective masses, smaller Auger loss, larger optical gain, shorter radiative recombination lifetime, lower p-doping activation energy, higher hole mobility, and larger conduction band offset. Cubic III-nitride semiconductors might thus enable next-generation devices such as efficiency-droop-free III-nitride visible light-emitting diodes (LEDs) and as-grown, normally-off AlGaN/GaN power transistors. However, the synthesis of cubic GaN has not been an easy task due to its metastability.

Cubic GaN epitaxy on large-area (~1 cm2) U-grooved silicon (100) dies is demonstrated. (Top Row) U-grooved silicon (100) and (Middle Row) cubic GaN atop (From Left to Right) Cross-sectional sketches, top-view photographs, top-view SEM images, and cross-sectional view SEM images of. (Bottom Row) Cubic GaN structural characterization. (From Left to Right) Phase mapping, tapping mode AFM and bright field top-view STEM images are shown. The plan-view STEM reveals that no threading dislocations or other types of dislocations on the cubic GaN surface. Stacking faults with a density of 3.27 ± 0.18 ± 104cm-1 are observed.

In Appl. Phys. Lett. 121, 032101 (2022) (EDITOR’S PICK 2022), the U of I team reports a III-nitride materials breakthrough: The synthesis of low-defect density, stable, and pure-phase cubic GaN on the scalable Si platform. They study the structural and optical properties and demonstrate through temperature-dependent, and time resolved photoluminescence measurements the high internal quantum efficiency of ~26%. They further identify the optical defect levels and report a selective etching technique, where they can remove hexagonal GaN selectively, not only increasing the efficiency to ~32% but also pointing to the potential path of achieving a continuous cubic GaN film. Overall, U of I demonstrates an encouraging stepping stone for creating the next generation, cubic-phase-based, III-nitride devices.

SPONSOR MESSAGE

Secure Your Hydrogen Supply

A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.

Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.

Take control with Nel on-site hydrogen generation.

Read more
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
Narrow-linewidth DFB lasers now at 405 and 488nm
Researchers develop tech for future fast-charging stations
Vermont GaN Tech Hub awarded nearly $24M
Onsemi completes buy-out of Qorvo SiC JFET business
Quantum Science announces Innovate UK funding
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website