Loading...
News Article

Swagelok releases new ALD Valve

News

Enables semiconductor manufacturers using ALD to improve chip yield

Swagelok, a US fluid system products, assemblies, and related services, has announced the release of the Swagelok ALD7 ultrahigh-purity (UHP) diaphragm valve—a product capable of delivering the consistency and long service life necessary for semiconductor fabricators to improve chip yields.

Compared to Swagelok’s current top-of-the-line ALD6 valve, the ALD7 is said to provide better flow consistency, flow capacity, and actuator speed. It also offers the performance at high temperatures necessary to allow chip fabricators to overcome limitations in current production processes and keep up with demand.

ALD7 valves can be integrated into either new tools or legacy equipment to provide improved flow capacity (up to 0.7 Cv) in the same 1.5-inch (38.1mm) footprint as existing valves, helping fabricators keep up with the strong global demand for chips that power advanced technology. ALD7 valves deliver precise dosing over tens of millions of ALD (atomic layer deposition) production cycles by actuating more quickly and consistently than even its ALD6 predecessor. The actuator’s open and close response time can be less than 5ms. The actuator is immersible to 150°C (302°F) and the valve body is rated to 200°C, allowing the valve to better support low-vapuor-pressure precursors that require high temperature delivery. This gives fabricators the control needed to maximise throughput and yield.

ALD7 valves feature a compact design with an integrated thermal isolator, allowing system designers to maximize limited space near the reaction chamber of chip production tools. The valves are also highly resistant to corrosive gases used in ALD processes, with valve bodies comprised of proprietary ultrahigh-purity Swagelok 316L VIM-VAR stainless steel. As a result, semiconductor tool manufacturers can rely on ALD7 valves to provide consistent performance under variable process conditions, enhancing productivity for customers without increasing operating costs.

“Since developing the industry’s first fit for purpose ALD valve nearly 20 years ago, we have worked with semiconductor customers to better understand the levels of performance needed from our UHP valves as chip manufacturers continue shrinking process nodes and maximizing chip yields,” explains Ben Olechnowicz, product manager at Swagelok. “This has resulted in pursuing innovative thinking and developing valves to actuate faster, perform in more extreme conditions, and allow higher coefficients of flow in demanding atomic layer processes. We designed the ALD7 as a reliable round-the-clock production valve that checks all those boxes, giving our customers the consistency of performance necessary to stay ahead in an industry that is seemingly always changing and demanding more from manufacturers.”

The ALD7 is available today in a modular surface-mount configuration with a high-flow C-seal or in straight configurations with a tube butt weld, and Swagelok VCR face seal fitting end connections. High-temperature electronic position sensors, optical position sensors, or solenoid pilot valve configurations are also available as add-on components.

SPONSOR MESSAGE

Secure Your Hydrogen Supply

A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.

Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.

Take control with Nel on-site hydrogen generation.

Read more
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
Narrow-linewidth DFB lasers now at 405 and 488nm
Researchers develop tech for future fast-charging stations
Vermont GaN Tech Hub awarded nearly $24M
Onsemi completes buy-out of Qorvo SiC JFET business
Quantum Science announces Innovate UK funding
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website