Loading...
News Article

GaNo Opto launches SiC Extreme UV photodiode

News

Next step is to develop EUV imaging arrays based on SiC photodiodes, says company

GaNo Optoelectronics Inc, China – which offers UV detectors and modules based on wide-bandgap semiconductors including GaN and SiC – has released what it claims are the first commercial SiC-based extreme UV (EUV) photodiode. Extreme UV is defined as having wavelengths from 124 nm down to 10 nm.

The intrinsically visible-blind EUV photodiodes can work in either photovoltaic or photoductive mode with high EUV photon detection efficiency, high response speed and high stability. After pilot production and multiple customer verifications started from Oct. 2021, GaNo Opto has started to ship SiC EUV photodiodes and components to several major customers worldwide.

Traditionally, commercial EUV detectors are solely based on silicon, which have been demonstrated with certain success but suffer from several intrinsic drawbacks. For example, although Si EUV detectors could exhibit moderate quantum efficiency in the EUV wavelength range, they require highly complex optical filters to achieve a high UV/visible rejection ratio as their peak response stays within the visible wavelength range. In addition, silicon detectors are not suitable for working in harsh environment, which would degrade considerably upon high fluence EUV irradiation.

“It has been well accepted that wide-bandgap semiconductor is the most suitable material for making UV photodetectors,” says GaNo Opto's chief technology officer Hai Lu, who is also distinguished professor at Nanjing University. “Due to the wide-bandgap nature of SiC, EUV photodiodes based on SiC have no response to background white light and could exhibit very low dark current down to 1 pA even at a high temperature of 150degC. It means that the SiC EUV photodiodes have extremely low noise, leading to very high signal-to-noise ratio and detectivity. Meanwhile, it is been confirmed that the radiation hardness of SiC photodiodes is at least 1000 times higher than their Si counterparts, thanks to the high electron-hole pair ionisation energy and displacement threshold energy of SiC semiconductor.” he notes.

In spite of these apparent advantages, the implementation of SiC EUV photodiodes is very challenging due to substrate or epi-related material defects, relatively poorly modelled device operation, and immature device processing technology.

“Our process shows that appropriate surface electrical field modulation and surface passivation techniques are critical for realising SiC EUV phodiodes with low leakage current and long term stability, both of which are necessary for high-end applications in advanced lithography system or space satellites,” Lu continues. “Our next step is to develop EUV imaging arrays based on SiC photodiodes. In this case, uniformity among each photodiode pixels and scalability would be the main technological barriers. New implantation and dopant activation sequences, and backend processing techniques are being developed to achieve this goal.” he adds.

GaNo Optoelectronics Inc is a spin-off high-tech company from Nanjing University, focusing on developing and producing next generation high sensitivity UV detectors, application modules, as well as offering technical consulting services related to UV sensing.

Its UV detector products cover various UV wavelength bands, ranging from near UV to deep UV, and then down to EUV, which have been widely used in solar index monitoring, UV curing, chemical/bio-agent detection, food/water/air sterilisation, water/air pollution monitoring, flame/arc detection and advanced semiconductor processing equipments.

SPONSOR MESSAGE

Secure Your Hydrogen Supply

A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.

Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.

Take control with Nel on-site hydrogen generation.

Read more
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
Narrow-linewidth DFB lasers now at 405 and 488nm
Researchers develop tech for future fast-charging stations
Vermont GaN Tech Hub awarded nearly $24M
Onsemi completes buy-out of Qorvo SiC JFET business
Quantum Science announces Innovate UK funding
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website