Loading...
News Article

UV LED manufacturing Breakthrough

News

Silanna says its short period superlattice approach allows easy wavelength tuning, higher power at short wavelengths, and exceptional lifetime performance

Silanna UV says that a breakthrough in UV-C LED technology offers advantages for applications as diverse as disinfection, water quality monitoring, gas sensing, liquid chromatography, and chemical and biological analysis.

The Australian company say its new manufacturing approach promises to make deep ultraviolet and far ultraviolet LEDs easier to make, more efficient at shorter wavelengths, and more reliable.

Silanna UV’s patented short period superlattice (SPSL) approach is said to overcome many of the difficulties that plague competing AlGaN UV-C LED technologies. In essence, Silanna UV has effectively created a new material, a nanostructure, which is much easier to control and has properties that are far superior to traditional AlGaN. The benefits for UV-C LED quality are revolutionary.

For years, UV-C LED manufacturers have relied on traditional AlGaN formulas. In theory, by adjusting the ratio of aluminum and gallium metal in the alloy lattice, the bandgap can be tuned to produce UV emissions from 340 nm to 210 nm, covering most of the UV spectrum.

But in reality, emission below 260nm require high Al-content AlGaN, which, unlike GaN, makes it very difficult to achieve desirable n and p-type doping, particularly at the shortest wavelengths, leading to poor electrical performance. High-Al content AlGaN also suffers from light extraction issues due to the polarization of emitted light, causing significant loss of light output, particularly in the far UV range below 240nm.

To overcome these problems in UV LEDs, Silanna UV uses new technology. Instead of the common AlGaN method, Silanna UV uses SPSL.In this approach, rather than using an old-fashioned ternary alloy, alternating layers of AlN and GaN (as many as several hundred layers) are meticulously built up to create a so-called SPSL.

Unlike a traditional ternary alloy, this SPSL’s key properties – including bandgap and conductivity – can be finely tuned by adjusting the thickness of the constituent layers. This means that the issues caused by High-Al content AlGaN are mitigated – in particular, that older method’s poor electrical characteristics and short wavelength light-loss.

Silanna says its SPSL technology gives major advantages over UV-C LED competitors, including the maintenance of high power at shorter wavelengths, superior electrical properties, and outstanding lifetime performance.

QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
Narrow-linewidth DFB lasers now at 405 and 488nm
Researchers develop tech for future fast-charging stations
Vermont GaN Tech Hub awarded nearly $24M
Onsemi completes buy-out of Qorvo SiC JFET business
Quantum Science announces Innovate UK funding
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: