Loading...
News Article

US team develops AlScN-based AI computing architecture

News

Ferro-diode-based compute-in-memory architecture allows processing and storage to occur in the same place

A team of researchers from the University of Pennsylvania’s School of Engineering and Applied Science, with scientists from Sandia National Laboratories and Brookhaven National Laboratory, has introduced a computing architecture based on ferro-diodes made of AlScN.

Said to be ideal for AI, the AlScN-based compute-in-memory (CIM) architecture allows processing and storage to occur in the same place, eliminating transfer time as well as minimising energy consumption. The work was published Nano Letters.

AlScN has the advantage that it can be deposited at temperatures low enough to be compatible with silicon foundries. “Most ferroelectric materials require much higher temperatures. AlScN’s special properties mean our demonstrated memory devices can go on top of the silicon layer in a vertical hetero-integrated stack," said researcher Troy Olson.

In 2021, the team established the viability of the AlScN as a compute-in-memory powerhouse. Its capacity for miniaturisation, low cost, resource efficiency, ease of manufacture and commercial feasibility demonstrated serious strides in the eyes of research and industry.

In the most recent study , the team observed that their CIM ferrodiode may be able to perform up to 100 times faster than a conventional computing architecture.

Other research in the field has successfully used compute-in-memory architectures to improve performance for AI applications. However, these solutions have been limited, unable to overcome the conflicting trade-off between performance and flexibility. Computing architecture using memristor crossbar arrays, a design that mimics the structure of the human brain to support high-level performance in neural network operations, has also demonstrated admirable speeds.

Yet neural network operations, which use layers of algorithms to interpret data and recognize patterns, are only one of several key categories of data tasks necessary for functional AI. The design is not adaptable enough to offer adequate performance on any other AI data operations.

The Penn team says their ferrodiode design offers groundbreaking flexibility that other compute-in-memory architectures do not. It achieves superior accuracy, performing equally well in not one but three essential data operations that form the foundation of effective AI applications. It supports on-chip storage, or the capacity to hold the enormous amounts of data required for deep learning, parallel search, a function that allows for accurate data filtering and analysis, and matrix multiplication acceleration, the core process of neural network computing.

“It is important to realize that all of the AI computing that is currently done is software-enabled on a silicon hardware architecture designed decades ago,” says Deep Jariwala, who co-led the project. “This is why artificial intelligence as a field has been dominated by computer and software engineers. Fundamentally redesigning hardware for AI is going to be the next big game changer in semiconductors and microelectronics. The direction we are going in now is that of hardware and software co-design.”

'Reconfigurable Compute-In-Memory on Field-Programmable Ferroelectric Diodes' by Xiwen Liu et al; Nano Letters 2022 22 (18)

SPONSOR MESSAGE

Secure Your Hydrogen Supply

A study supply of high-purity hydrogen is critical to semiconductor fabrication. Supply chain interruptions are challenging manufacturers, leading to production slowdowns and stoppages. On-site hydrogen generation offers a scalable alternative for new and existing fabs, freeing the operator from dependence on delivered gas.

Plant managers understand the critical role that hydrogen plays in semiconductor fabrication. That important job includes crystal growth, carrier gas, wafer annealing, and in the emerging Extreme UV Lithography (EUV) that will enable new generations of devices. As the vast need for semiconductors grows across all sectors of world economies, so does the need for high-purity hydrogen.

Take control with Nel on-site hydrogen generation.

Read more
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
Narrow-linewidth DFB lasers now at 405 and 488nm
Researchers develop tech for future fast-charging stations
Vermont GaN Tech Hub awarded nearly $24M
Onsemi completes buy-out of Qorvo SiC JFET business
Quantum Science announces Innovate UK funding
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website