Loading...
News Article

514 nm laser diode replaces argon-ion lasers

News

Ams Osram releases first off-the shelf semiconductor laser emitter for 514nm life science applications

Ams Osram has released the Metal Can PLT5 522FA_P-M12, its first commercial off-the-shelf semiconductor laser emitter to produce the specific 514nm wavelength output required by many applications for life science in research and diagnostics.

The introduction of a 514 nm (±1 nm) laser diode as a standard, non-custom product enables manufacturers of scientific and measurement equipment to replace the argon-ion lasers which have traditionally been used to generate laser emission at a peak wavelength of 514.5 nm.

A semiconductor laser such as the PLT5 522FA_P-M12 is in general more cost-effective and much smaller than an argon-ion laser, has a longer operating lifetime, and eliminates the need for a cumbersome water cooling mechanism. The weight of a single-mode laser diode is just a few grams, compared to several kilograms for cooling and the power supply of an argon-ion laser.

Previous attempts to produce laser-diode based 514 nm emitter modules have been hampered by the substantial logistics effort required in the past to customize laser diodes binned by a specific wavelength. The new 514 nm laser diode will enable customers to produce a narrow-bandwidth using a VBG (volume Bragg grating) or external cavity design, reducing the bandwidth even further to < 0.1 nm for applications including Raman spectroscopy and holography.

The laser diode PLT5 522FA_P with 50 mW optical power output at 514 nm ±1 nm (Bin M12) is compatible with fluorescent dyes in the 514 nm range as well as with various third-party lenses. This makes the laser diode suitable for many applications in the field of life science, including: flow cytometry, confocal microscopy and spectroscopy; material identification and analysis; diagnostics; DNA sequencing; and forensic analysis.

"The scientific equipment market will benefit from a sustainable, production-friendly option to replace bulky, expensive argon-ion lasers with no loss of optical precision or performance. The 514 nm version of the PLT5 522FA_P laser diode family, which maintains performance within its operating parameters with a high degree of precision, provides exactly this option, enabling customers to reduce their materials cost and save space while enjoying the much longer lifetime before replacement of a high-quality laser diode," said Thomas Brandes, senior product marketing manager at Ams Osram.

Samples of the PLT5 522FA_P-M12 laser diode are available now. Ams Osram is also developing a demonstrator module which combines the laser emitter with a driver and a lens to produce a collimated beam.

QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
Narrow-linewidth DFB lasers now at 405 and 488nm
Researchers develop tech for future fast-charging stations
Vermont GaN Tech Hub awarded nearly $24M
Onsemi completes buy-out of Qorvo SiC JFET business
Quantum Science announces Innovate UK funding
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website