+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

German University chooses Veeco tools


University of Giessen will use integrated MBE and ALD system for hybrid GaN deposition research

Veeco Instruments has received an order from the Justus Liebig University Giessen in Germany for an integrated GENxplor R&D MBE and Fiji Atomic Layer Deposition (ALD) system.

The GENxplor MBE system enables the epitaxial growth of high-quality materials for III-nitride semiconductors for photonic and electronic applications focusing on material research and the development of cubic GaN material.

This dual platform allows for in-vacuum wafer transfer from the GENxplor system to the plasma-enhanced Fiji ALD system and back, and will further enable research breakthroughs for applications such as microLEDs, optical memory and next generation materials for photocatalysis and water splitting.

According to Sangam Chatterjee, head of the University of Giessen Spectroscopy and Optics Group, the integrated GENxplor and Fiji systems were chosen because of Veeco’s process and system design expertise. “The decision to partner with Veeco was based on their knowledge of the epitaxial process and their ability to realize an innovative solution that enables our research,” said Chatterjee. “This gives my team confidence that working with Veeco will make our research go beyond established optoelectronics, developing new materials for photocatalysis towards the pressing goals of realizing regenerative energy production and storage.”

The GENxplor system deposits high quality epitaxial layers on substrates up to 3 inch in diameter. The GENxplor platform is known as a highly sophisticated and capable research system that is tailored to meet the unique challenges of leading-edge compound semiconductor material research and development.

The Fiji ALD System is an advanced thin film next-generation ALD system capable of performing thermal and plasma-enhanced deposition in a modular, high-vacuum, flexible architecture that accommodates a wide range of deposition modes using multiple configurations of precursors and plasma gases. The system’s intuitive interface makes it easy to monitor and change recipes and processes as required by customers.

“We are proud to have been selected by Professor Chatterjee and the research team at University of Giessen,” commented Ganesh Sundaram, Veeco’s VP of research and engineering technology. “We have seen great interest in combining our proven MBE and ALD technologies to advance semiconductor device performance and this platform, delivered to Professor Chatterjee, exemplifies our ability to create novel solutions that allow our customers to solve difficult material challenges.”

This research initiative at the University of Giessen is being supported by the European Union and the European Regional Development Fund. The goal of this development fund is to strengthen economic, social and territorial cohesion in the European Union by correcting imbalances between its regions. This investment in a smarter, greener, more connected and more social Europe demonstrates the European Union’s aim to invest in the future of its citizens.

Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: