Loading...
News Article

First monolithic micro-LED display using organic TFTs

News

SmartKem uses semiconductor inks to process transistors directly on top of GaN LEDs

SmartKem, a company based in Manchester UK, has announced the world’s first monolithic micro-LED display using organic thin-film transistors (OTFTs). It says this new method of processing a thin-film transistor backplane on top of GaN LEDs has the potential to accelerate the commercialisation of micro-LED displays.

Consumer electronics companies are developing micro-LED displays since they promise higher brightness, lower power consumption and longer lifetime. This is particularly important for portable powered displays such as smartwatches and AR/VR displays which cannot accommodate large batteries.

Today’s existing VR & AR headsets use LCD and OLED displays, lacking brightness, resolution, power efficiency and lifetime. Existing efforts at establishing micro-LED manufacturing use physical transfer of LEDs from the wafer upon which they are manufactured to the TFT display backplane, where they must be laser welded to the contact pad of the transistor to make an electrical connection.

Since, for high resolution displays, millions of tiny LEDs need to be transferred from one place to another, then the potential for placement error is large. If a 99.9 percent placement yield is achieved, then a full HD colour display will have over 6,000 faulty sub-pixel LEDs that would need to be identified, removed, and re-attached. Once the 6,000 faulty LEDs have been replaced, a 99.9 percent yield will still mean six of these will be faulty, so your job of manufacturing a perfect display is not yet finished. It is the process of seeking out the faults and then replacing them one by one which is slowing down commercialisation of this new type of display.

SmartKem’s patented core chemistry allows its semiconductor inks to be processed at the low temperature of 80°C. With this lower temperature, you can process its transistors directly on top of the micro-LEDs. This eliminates the mass transfer and laser welding processes, and the fabrication of OTFTs can use existing low-cost manufacturing tools currently used for LCD backplane manufacturing.

This approach cannot be carried out with other types of thin-film transistors as they are processed at the much higher temperature of 300°C, which damages the micro-LEDs, and is why you need to make them separately and then laboriously join them together one by one.

QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
Lynred to exhibit Eyesential SWIR sensor for machine vision
Thorlabs buys VCSEL firm Praevium Research
Advancing tuneable InP lasers on a heterogeneous platform
P-GaN gate HEMTs have record threshold voltage
Guerrilla RF releases GaN power amplifier dice
Narrow-linewidth DFB lasers now at 405 and 488nm
Researchers develop tech for future fast-charging stations
Vermont GaN Tech Hub awarded nearly $24M
Onsemi completes buy-out of Qorvo SiC JFET business
Quantum Science announces Innovate UK funding
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website