Loading...
News Article

Perovskite sandwich generates energy

News

KAUST researchers develop self-powered photodetector by coupling silicone-based polymers with an organometallic halide perovskite

Autonomy is a much-anticipated feature of next-generation microsystems, such as remote sensors, wearable electronic gadgets, implantable biosensors and nanorobots. Now, a team from KAUST (King Abdullah University of Science and Technology) led by Husam Alshareef, Jr-Hau He and Khaled Salama have developed small standalone devices by integrating maintenance-free power units that produce and use their own fuel instead of relying on an external power source.

Triboelectric nanogenerators (TENGs) capture mechanical energy from their surroundings, such as vibrations and random motion produced by humans, and convert it into electricity. In these tiny generators, frictional contact between materials of different polarity creates oppositely charged surfaces. Repeated friction causes electrons to hop between these surfaces, resulting in electric voltage.

"We exploited this triboelectric effect to harvest energy from simple movements, such as hand clapping, finger tapping and routine hand motion, to drive different types of sensors," says Alshareef.

The researchers have developed a self-powered photodetector by coupling the silicone-based polymer polydimethylsiloxane (PDMS) as a TENG with a material called organometallic halide perovskite. The lead-halide-based material features optoelectronic properties that are desirable in solar cells and LEDs.

To streamline their design and eliminate the need for a motion actuator, He's team fabricated the photodetector using two multilayered polymer-based sheets separated by a small gap. One sheet comprised the perovskite ultrathin film while the other contained a PDMS layer. The gap allowed the team to harness the triboelectric effect when the device was activated by finger tapping.

"The self-powered device showed excellent responsiveness to incident light, especially when exposed to light of low intensity", says Mark Leung, the lead author of the photodetector study. Because of its flexible and transparent polymer components, it also retained its performance after being bent 1,000 times and regardless of the orientation of the incident light.

Pushing the boundaries further, the researchers engineered a wearable self-powered bracelet that can store the converted mechanical energy by combining a carbon-fibre-embedded silicone nanogenerator with MXene microsupercapacitors (pictured above).

They incorporated nanogenerator and miniaturised electrochemical capacitors into a single monolithic device encased in silicone rubber. The leak-proof and stretchable shell provided a flexible and soft bracelet that fully conformed to the body. Fluctuations in the skin-silicone separation altered the charge balance between electrodes, causing the electrons to flow back and forth across the TENG and the microsupercapacitor to charge up.

In addition to exhibiting longer cycle life and short charging time, MXene microsupercapacitors can accumulate more energy in a given area than thin-film and micro-batteries, offering faster and more effective small-scale energy storage units for TENG-generated electricity. When active, the bracelet can use the stored energy to operate various electronic devices, such as watches and thermometers.

"Our ultimate goal is to develop a self-powered sensor platform for personalised health monitoring," says PhD student Qiu Jiang, the lead author of the self-charging band project. The team is now planning to introduce sensors into the system to detect biomarkers in human sweat.

Double heterostructure HEMTs for handsets
AlixLabs to collaborate with Linköping University
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
SemiQ launches hi-rel 1700V SiC MOSFETs
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in:
 
x
Adblocker Detected
Please consider unblocking adverts on this website