+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
 
News Article

Wolfspeed Delivers First 1000V SiC MOSFET

Meets growing demand for efficient electric vehicle fast battery chargers

Wolfspeed has introduced a 1000V SiC MOSFET for fast charging and industrial power supplies, that is said to cut component count by 30 percent while achieving more than three times increase in power density and a 33 percent increase in output power.

"Supporting the widespread implementation of off-board charging stations, Wolfspeed's technology enables smaller, more efficient charging systems that provide higher power charging at lower overall cost. This market requires high efficiency and wide output voltage range to address the various electric vehicle battery voltages being introduced by automotive suppliers," explained John Palmour, CTO of Wolfspeed.

"Wolfspeed's new 1000V SiC MOSFET offers system designers ultra-fast switching speeds with a fraction of a silicon MOSFET's switching losses. The figure-of-merit delivered by this device is beyond the reach of any competing silicon-based MOSFET," Palmour added.

Designers can reduce component count by moving from silicon-based, three-level topologies to simpler two-level topologies made possible by the 1000 Vds rating of the SiC MOSFET. The increase in output power in a reduced footprint is realised by the low output capacitance - as low as 60pF -  which significantly reduces switching losses.

This device enables operations at higher switching frequencies, which shrinks the size of the resonant tank elements and decreases overall losses, thus reducing heatsink requirements. Wolfspeed has determined these proof-points by constructing a 20kW full-bridge resonant LLC converter and comparing it to a market-leading 15kW silicon system.

Wolfspeed offers a 20kW full-bridge resonant LLC converter reference design, listed as part number CRD-20DD09P-2. This fully assembled hardware set allows designers to quickly evaluate the new 1000V SiC MOSFET and demonstrate its faster switching capability, as well as the increased system power density the device enables.

×
Search the news archive

To close this popup you can press escape or click the close icon.
×
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • 1st January 1970
  • View all news 22645 more articles
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: