Loading...
News Article

GaN surface texture affects biological cell behaviour

US researchers learn more about suitability of GaN materials for bioelectronic devices

Researchers at North Carolina State University have determined that the surface texture of GaN materials can influence the health of nearby cells. The work is significant because GaN is a material of interest for developing new devices that can control cellular behaviour.

GaN materials have a unique set of properties that make them viable candidates for bioelectronic devices: you can tune the charge on the surface of the materials; the materials don't easily degrade in aqueous environments like the body; and they are nontoxic.

"But while living cells will survive in the presence of GaN, we wanted to know if we could influence the behavior of the cells by changing the make-up of the GaN material," says Patrick Snyder, a PhD student at NC State and lead author of a paper on the work 'Nanoscale topography, semiconductor polarity and surface functionalization: additive and cooperative effects on PC12 cell behavior' published in RSC Advances. "Basically, we wanted to know if engineering the GaN could influence the health and metabolism of the surrounding cells."

The paper was co-authored by Ramon Collazo, an assistant professor of materials science and engineering at NC State; Albena Ivanisevic, a professor of materials science and engineering at NC State; and Ronny Kirste, a postdoctoral researcher at NC State who is also affiliated with Adroit Materials. 

To do this, the researchers tested three different materials: GaN, and two variations of aluminum GaN - Al0.8Ga0.2N and Al0.7Ga0.3N. The researchers manipulated the surface of the materials, creating rough and smooth versions of each. Lastly, the researchers modified the surface chemistry of the materials to make them more or less attractive to water - hydrophilic or hydrophobic, respectively.

For example, there were six types of GaN material: hydrophobic, hydrophilic and unmodified rough GaN; and hydrophobic, hydrophilic and unmodified smooth GaN. The same was also true for both compositions of AlGaN.

The researchers then used the various GaN materials as substrates for growing PC12 cells - a line of well-studied model cells that are well understood.

During the seven-day experiment, the researchers monitored the cell cultures to track the health and metabolism of the cells.

"We found that the roughly-textured AlGaN compositions released more gallium into the cellular environment," Snyder says. "While this did not kill the cells, it did cause metabolic changes."

"This tells us that the topography of the material matters, and can influence cellular behavior," says Albena Ivanisevic. "The work demonstrates that surface textures of bulk materials - like those used to create devices - can have similar effects to what we've previously seen in nanoscale materials."

The work supported by the US Army Research Office and by the National Science Foundation.

Say hello to the heterogeneous revolution
Double heterostructure HEMTs for handsets
AlixLabs to collaborate with Linköping University
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: