Loading...
News Article

Dutch researchers develop 1,000 times more efficient nano-LED

Technology could open door to optical data transmission between and within microchips

Researchers at Eindhoven University of Technology have developed an LED of some hundred nanometers with an integrated light channel (waveguide) to transport the light signal.

This integrated nano-LED is said to be 1000 times more efficient than the best variants developed elsewhere. The findings were published in the online journal Nature Communications.

The team has made particular progress in the quality of the integrated coupling of the light source and the waveguide. The efficiency of the new nano-LED currently lies between 0.01 and 1 percent, but the researchers expect to be well above that figure soon thanks to a new production method.

A key characteristic of the new nano-LED is that it is integrated into a silicon substrate on a membrane of InP. Furthermore, tests reveal that the new element converts electrical signals rapidly into optical signals and can handle data speeds of several gigabits per second.

With electronic data connections within and between microchips becoming a bottleneck in the exponential growth of data traffic worldwide, optical connections are the obvious successors. But optical data transmission requires an adequate nanoscale light source, and this has been lacking. The researchers in Eindhoven believe that their nano-LED might be a viable solution that will take the brake off the growth of data traffic on chips.

However, they are being cautious about future prospects as the development is at too early  a stage to be exploited by industry at the moment, and the production technology that is needed still has to get off the ground.

The study is part of the Dutch Gravitation Programme 'Research Centre for Integrated Nanophotonics' being performed at TU/e. The Institute for Photonic Integration of TU/e is one of the world's leading research institutes for integrated photonics.

'Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon' by V. Dolores-Calzadilla et al; Nature Communications, 2 February 2017.

Say hello to the heterogeneous revolution
Double heterostructure HEMTs for handsets
AlixLabs to collaborate with Linköping University
SiC MOSFETs: Understanding the benefits of plasma nitridation
Wolfspeed reports Q2 results
VueReal secures $40.5m to scale MicroSolid printing
Mitsubishi joins Horizon Europe's FLAGCHIP project
Vishay launches new high voltage SiC diodes
UK team leads diamond-FET breakthrough
GaN adoption at tipping point, says Infineon
BluGlass files tuneable GaN laser patents
QD company Quantum Science expands into new facility
Innoscience files lawsuit against Infineon
Riber revenues up 5% to €41.2m
Forvia Hella to use CoolSiC for next generation charging
Photon Design to exhibit QD simulation tool
Ortel transfers CW laser fabrication to Canada
Luminus adds red and blue multi-mode Lasers
PseudolithIC raises $6M for heterogeneous chiplet tech
Mesa sidewall design improves HV DUV LEDs
IQE revenue to exceed expectations
'Game-changing' VCSEL system targets clinical imaging
German start-up secures finance for SiC processing tech
Macom signs preliminaries for CHIPS Act funding
IQE and Quintessent partner on QD lasers for AI
EU funds perovskite tandems for fuel-free space propulsion
EU to invest €3m in GeSi quantum project
Transforming the current density of AlN Schottky barrier diodes
Turbocharging the GaN MOSFET with a HfO₂ gate
Wolfspeed launches Gen 4 SiC MOSFET technology
Report predicts high growth for UK's North East
Element Six unveils Cu-diamond composite
×
Search the news archive

To close this popup you can press escape or click the close icon.
Logo
x
Logo
×
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.


Please subscribe me to:

 

You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: