+44 (0)24 7671 8970
More publications     •     Advertise with us     •     Contact us
News Article

Researchers make first 2D microprocessor

Processor chip made of 115 MoS2 transistors is first step toward ultra-thin, flexible logic devices

Researchers from the Graphene Flagship, working at the TU Vienna in Austria, have designed and fabricated the first microprocessors based on graphene and related 2D materials such as transition metal dichalcogenides (TMDs).

Using transistors made from the TMD MoS2, the microprocessors are capable of 1-bit logic operations and the design is scalable to multi-bit operations. With the drive towards smart objects and the Internet of Things, the microprocessors hold promise for integrating computational power into everyday objects and surfaces.

"In general, being a flexible material there are new opportunities for novel applications. One could combine these processor circuits with light emitters that could also be made with MoS2 to make flexible displays and e-paper, or integrate them for logic circuits in smart sensors," said Thomas Mueller, who led the work at TU Vienna.

The thinness of the MoS2 means that the transistors are highly responsive. "In principle, it's an advantage to have a thin material for a transistor. The thinner the material, the better the electrostatic control of the transistor channel, and the smaller the power consumption," said Mueller. The advantage of thin microprocessors means that low-powered computers could be integrated into everyday objects without adding bulk.

Complex Circuitry

The MoS2 microprocessor is the most advanced circuitry made in this way. The devices were tested using simple programs, delivering the correct results with excellent signal quality and low power consumption.

Compared to modern processors, which can have billions of transistors in a single chip, the 115-transistor devices are very simple. However, it is a very early stage for a new technology, and the team have concrete plans for the next steps: "Our goal is to realise significantly larger circuits that can do much more in terms of useful operations. We want to make a full 8-bit design - or even more bits - on a single chip with smaller feature sizes," said Mueller. 

This goal presents a challenge in terms of design and fabrication: "Adding additional bits of course makes everything much more complicated. For example, adding just one bit will roughly double the complexity of the circuit," said Stefan Wachter, a researcher at TU Vienna and first author of the work.

Improving the multi-stage design process will be an important step in developing high-yield production methods for the MoS2 microprocessors, since - among other factors - the transfer of large area, bi-layer MoS2 onto wafers was a significant source of device failure. Dmitry Polyushkin of TU Vienna outlines the next steps: "Our approach is to improve the processing to a point where we can reliably make chips with a few tens of thousands of transistors. For example, growing directly onto the chip would avoid the transfer process, which would give higher yield so that we can go to more complex circuits."

Technology Horizons

"This simple circuit is a first conceptual step towards the implementation of simple logic in flexible devices for everyday use, such as food packaging or textiles," said Andrea Ferrari from the University of Cambridge, UK, the Science and Technology Officer of the Graphene Flagship, and Chair of its Management Panel. "The goal is not to compete head on with the established silicon technology, but to fill those complementary gaps not yet enabled by it."

Search the news archive

To close this popup you can press escape or click the close icon.
Register - Step 1

You may choose to subscribe to the Compound Semiconductor Magazine, the Compound Semiconductor Newsletter, or both. You may also request additional information if required, before submitting your application.

Please subscribe me to:


You chose the industry type of "Other"

Please enter the industry that you work in:
Please enter the industry that you work in: