Researchers control light with electric fields
They think that this new technique could change our "˜way of watching'. For instance, it may shape a light into arbitrary patterns, which may find applications in goggle-free virtual reality lenses and projectors, the animation movie industry or camouflage.
The team has developed a technique that can change the refractive index for visible light in these 2D semiconductor materials by 60 percent "“ two orders of magnitude better than previous results - at speeds of billions of times per second.
Linyou Cao, an assistant professor of materials science and engineering at NC State and corresponding author of a paper on the work says that the method is similar to the technique used to provide the computing capabilities of computers. "In computers, an electric field is used to turn electric current on or off, which corresponds to logic 1 and logic 0, the basis of binary code. With this new discovery, a light may be controlled to be strong or weak, spread or focused, pointing one direction or others by an electric field."
"We changed the refractive index by applying charge to 2D semiconductor materials in the same way one would apply charge to transistors in a computer chip," Cao says. "Using this technique, we achieved significant, tunable changes in the index within the red range of the visible spectrum."
Currently, the new technique allows researchers to tune the refractive index by any amount up to 60 percent "“ the greater the voltage applied to the material, the greater the degree of change in the index. And, because the researchers are using the same techniques found in existing computational transistor technologies, these changes are dynamic and can be made billions of times per second.
"This technique may provide capabilities to control the amplitude and phase of light pixel by pixel in a way as fast as modern computers," says Yiling Yu, a recent graduate of NC State and lead author of the paper.
"This is only a first step," Cao says. "We think we can optimize the technique to achieve even larger changes in the refractive index. And we also plan to explore whether this could work at other wavelengths in the visual spectrum."
Cao and his team are also looking for industry partners to develop new applications for the discovery.
The paper, 'Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers' is published in the journal Nano Letters.
The work was done with support from the US National Science Foundation under grant ECCS-1508856, and from the Center for the Computational Design of Functional Layered Materials at Temple University, which is funded by the Department of Energy under grant DESC0012575.